版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省部分高中2026届数学高一上期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的最大值为A.2 B.C. D.42.方程的所有实数根组成的集合为()A. B.C. D.3.方程的解为,若,则A. B.C. D.4.已知是上的奇函数,且当时,,则当时,()A. B.C. D.5.高斯是德国著名的数学家,近代数学奠基者之一,享有数学王子的美誉,他和阿基米德、牛顿并列为世界三大数学家,用其姓名命名的“高斯函数”为,其中表示不超过的最大整数,例如,已知函数,令函数,则的值域为()A.B.C.D.6.已知,,,则的边上的高线所在的直线方程为()A. B.C. D.7.在中,,,若点满足,则()A. B.C. D.8.已知集合,,若,则的值为A.4 B.7C.9 D.109.设是定义在上的奇函数,且当时,,则()A. B.C. D.10.函数的最大值为()A. B.C.2 D.3二、填空题:本大题共6小题,每小题5分,共30分。11.如果函数仅有一个零点,则实数的值为______12.的值为______.13.写出一个满足,且的函数的解析式__________14.若函数是奇函数,则__________.15.设向量不平行,向量与平行,则实数_________.16.若关于的方程只有一个实根,则实数的取值范围是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知二次函数满足:,且该函数的最小值为1.(1)求此二次函数的解析式;(2)若函数的定义域为(其中),问是否存在这样的两个实数m,n,使得函数的值域也为A?若存在,求出m,n的值;若不存在,请说明理由.18.有一圆与直线相切于点,且经过点,求此圆的方程19.若=,是第四象限角,求的值.20.(附加题,本小题满分10分,该题计入总分)已知函数,若在区间内有且仅有一个,使得成立,则称函数具有性质(1)若,判断是否具有性质,说明理由;(2)若函数具有性质,试求实数的取值范围21.设函数.(1)计算;(2)求函数的零点;(3)根据第(1)问计算结果,写出的两条有关奇偶性和单调性的正确性质,并证明其中一个.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据两角和的正弦公式得到函数的解析式,结合函数的性质得到结果.【详解】函数根据两角和的正弦公式得到,因为x根据正弦函数的性质得到最大值为.故答案为B.【点睛】这个题目考查了三角函数的两角和的正弦公式的应用,以及函数的图像的性质的应用,题型较为基础.2、C【解析】首先求出方程的解,再根据集合的表示方法判断即可;【详解】解:由,解得或,所以方程的所有实数根组成的集合为;故选:C3、C【解析】令,∵,.∴函数在区间上有零点∴.选C4、B【解析】设,则,求出的解析式,根据函数为上的奇函数,即可求得时,函数的解析式,得到答案.【详解】由题意,设,则,则,因为函数为上的奇函数,则,得,即当时,.故选:B.【点睛】本题主要考查了利用函数的奇偶性求解函数的解析式,其中解答中熟记函数的奇偶性,合理计算是解答的关键,着重考查了推理与运算能力,属于基础题.5、C【解析】先进行分离,然后结合指数函数与反比例函数性质求出的值域,结合已知定义即可求解【详解】解:因为,所以,所以,则的值域故选:C6、A【解析】先计算,得到高线的斜率,又高线过点,计算得到答案.【详解】,高线过点∴边上的高线所在的直线方程为,即.故选【点睛】本题考查了高线的计算,利用斜率相乘为是解题的关键.7、C【解析】由题可得,进一步化简可得.【详解】,,.故选:C.8、A【解析】可知,或,所以.故选A考点:交集的应用9、D【解析】根据奇函数的性质求函数值即可.【详解】故选:D10、B【解析】先利用,得;再用换元法结合二次函数求函数最值.【详解】,,当时取最大值,.故选:B【点睛】易错点点睛:注意的限制条件.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用即可得出.【详解】函数仅有一个零点,即方程只有1个根,,解得.故答案为:.12、11【解析】进行对数和分数指数幂的运算即可【详解】原式故答案为:1113、(答案不唯一)【解析】根据题意可知函数关于对称,写出一个关于对称函数,再检验满足即可.【详解】由,可知函数关于对称,所以,又,满足.所以函数的解析式为(答案不唯一).故答案为:(答案不唯一).14、【解析】根据题意,得到,即可求解.【详解】因为是奇函数,可得.故答案为:.15、-2【解析】因为向量与平行,所以存在,使,所以,解得答案:16、【解析】把关于的方程只有一个实根,转化为曲线与直线的图象有且只有一个交点,在同一坐标系内作出曲线与直线的图象,结合图象,即可求解.【详解】由题意,关于方程只有一个实根,转化为曲线与直线的图象有且只有一个交点,在同一坐标系内作出曲线与直线的图象,如图所示,结合图象可知,当直线介于和之间的直线或与重合的直线符合题意,又由直线在轴上的截距分别为,所以实数的取值范围是.故答案为.【点睛】本题主要考查了直线与圆的位置关系的应用,其中解答中把方程的解转化为直线与曲线的图象的交点个数,结合图象求解是解答的关键,着重考查了转化思想,以及数形结合思想的应用,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)存在,,.【解析】(1)设,由,求出值,可得二次函数的解析式;(2)分①当时,②当时,③当时,三种情况讨论,可得存在满足条件的,,其中,【详解】解:(1)依题意,可设,因,代入得,所以.(2)假设存在这样m,n,分类讨论如下:当时,依题意,即两式相减,整理得,代入进一步得,产生矛盾,故舍去;当时,依题意,若,,解得或(舍去);若,,产生矛盾,故舍去;当时,依题意,即解得,产生矛盾,故舍去综上:存在满足条件的m,n,其中,18、x2+y2-10x-9y+39=0【解析】法一:设出圆的方程,代入B点坐标,计算参数,即可.法二:设出圆的方程,结合题意,建立方程,计算参数,即可.法三:设出圆的一般方程,代入A,B坐标,建立方程,计算参数,即可.法四:计算CA直线方程,计算BP方程,计算点P坐标,计算半径和圆心坐标,建立圆方程,即可【详解】法一:由题意可设所求的方程为,又因为此圆过点,将坐标代入圆的方程求得,所以所求圆的方程为.法二:设圆的方程为,则圆心为,由,,,解得,所以所求圆的方程为.法三:设圆的方程为,由,,在圆上,得,解得,所以所求圆的方程为.法四:设圆心为,则,又设与圆的另一交点为,则的方程为,即.又因为,所以,所以直线的方程为.解方程组,得,所以所以圆心为的中点,半径为.所以所求圆的方程为.【点睛】考查了圆方程的计算方法,关键在于结合题意建立方程组,计算参数,即可,难度中等19、【解析】先计算正弦与正切,利用诱导公式化简可得【详解】若=,是第四象限角,则原式=.20、(Ⅰ)具有性质;(Ⅱ)或或【解析】(Ⅰ)具有性质.若存在,使得,解方程求出方程的根,即可证得;(Ⅱ)依题意,若函数具有性质,即方程在上有且只有一个实根.设,即在上有且只有一个零点.讨论的取值范围,结合零点存在定理,即可得到的范围试题解析:(Ⅰ)具有性质依题意,若存在,使,则时有,即,,.由于,所以.又因为区间内有且仅有一个,使成立,所以具有性质5分(Ⅱ)依题意,若函数具有性质,即方程在上有且只有一个实根设,即在上有且只有一个零点解法一:(1)当时,即时,可得在上为增函数,只需解得交集得(2)当时,即时,若使函数在上有且只有一个零点,需考虑以下3种情况:(ⅰ)时,在上有且只有一个零点,符合题意(ⅱ)当即时,需解得交集得(ⅲ)当时,即时,需解得交集得(3)当时,即时,可得在上为减函数只需解得交集得综上所述,若函数具有性质,实数的取值范围是或或14分解法二:依题意,(1)由得,,解得或同时需要考虑以下三种情况:(2)由解得(3)由解得不等式组无解(4)由解得解得综上所述,若函数具有性质,实数的取值范围是或或14分考点:1.零点存在定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年成都农商银行软件开发岗(应用架构方向)社会招聘10人备考题库带答案详解
- 2025年福州大学附属省立医院高层次人才招聘备考题库及答案详解1套
- 2025年民生银行深圳分行社会招聘备考题库及1套参考答案详解
- 成都农商银行关于2025年产业金融岗社会招聘的备考题库附答案详解
- 手写合理的协议书
- 借户购房协议书
- 工作安全责协议书
- 电子厂奖励协议书
- 伐木合伙协议书
- 编外合同协议合同
- 2025年医院人力资源管理测试题(附答案)
- 2025胰岛素皮下注射团体标准解读
- T-CBJ 2206-2024 白酒企业温室气体排放核算方法与报告要求
- 预防职务犯罪法律讲座
- 云南省昆明市中华小学2025年数学四年级第一学期期末检测试题含解析
- 科创基地管理办法
- 代付工程款三方协议(2025版)
- 卡西欧电子琴CTK-496(700)中文说明书
- DB64-T 1853-2022 畜禽粪便封闭式强制曝气堆肥技术规程
- 气管切开的湿化管理及护理
- 密闭空间机器人巡检
评论
0/150
提交评论