版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届广东省中山市数学高二上期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.点到直线的距离是()A. B.C. D.2.设函数的图象为C,则下面结论中正确的是()A.函数的最小正周期是B.图象C关于点对称C.函数在区间上是增函数D.图象C可由函数的图象向右平移个单位得到3.日常饮用水通常都是经过净化的,随若水纯净度的提高,所需净化费用不断增加.已知水净化到纯净度为时所需费用单位:元为那么净化到纯净度为时所需净化费用的瞬时变化率是()元/t.A. B.C. D.4.已知实数,满足,则的最小值是()A. B.C. D.5.已知,,,则最小值是()A.10 B.9C.8 D.76.已知直线和平面,且在上,不在上,则下列判断错误的是()A.若,则存在无数条直线,使得B.若,则存在无数条直线,使得C.若存在无数条直线,使得,则D.若存在无数条直线,使得,则7.函数极小值为()A. B.C. D.8.关于x的方程在内有解,则实数m的取值范围()A. B.C. D.9.在数列中,已知,则“”是“是单调递增数列”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.圆心在直线上,且过点,并与直线相切的圆的方程为()A. B.C. D.11.已知公差不为0的等差数列中,,且,,成等比数列,则其前项和取得最大值时,的值为()A.12 B.13C.12或13 D.13或1412.函数的最小值是()A.2 B.4C.5 D.6二、填空题:本题共4小题,每小题5分,共20分。13.阿基米德(公元前287—公元前212年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.已知椭圆经过点,则当取得最大值时,椭圆的面积为_________14.已知O为坐标原点,抛物线C:的焦点为F,P为C上一点,PF与x轴垂直,Q为x轴上一点,且,若,则______.15.设空间向量,且,则___________.16.如图的一系列正方形图案称为谢尔宾斯基地毯,图案的做法是:把一个正方形分成9个全等的小正方形,对中间的一个小正方形进行着色得到第1个图案(图1);在第1个图案中对没有着色的小正方形再重复以上做法得到第2个图案(图2);以此类推,每进行一次操作,就得到一个新的正方形图案,设原正方形的边长为1,记第n个图案中所有着色的正方形的面积之和为,则数列的通项公式______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆长轴长为4,A,B分别为左、右顶点,P为椭圆上不同于A,B的动点,且点在椭圆上,其中e为椭圆的离心率(1)求椭圆的标准方程;(2)直线AP与直线(m为常数)交于点Q,①当时,设直线OQ的斜率为,直线BP的斜率为.求证:为定值;②过Q与PB垂直的直线l是否过定点?如果是,请求出定点坐标;如果不是,请说明理由18.(12分)在平面直角坐标系中,双曲线的左、右两个焦点为、,动点P满足(1)求动点P的轨迹E的方程;(2)设过且不垂直于坐标轴的动直线l交轨迹E于A、B两点,问:线段上是否存在一点D,使得以DA、DB为邻边的平行四边形为菱形?若存在,请给出证明:若不存在,请说明理由19.(12分)平面直角坐标系xOy中,点,,点M满足.记M的轨迹为C.(1)说明C是什么曲线,并求C的方程;(2)已知经过的直线l与C交于A,B两点,若,求.20.(12分)已知圆:与直线:.(1)证明:直线过定点,并求出其坐标;(2)当时,直线l与圆C交于A,B两点,求弦的长度.21.(12分)如图,四边形是矩形,平面平面,为中点,,,(1)证明:平面平面;(2)求二面角的余弦值22.(10分)已知为各项均为正数的等比数列,且,(1)求数列的通项公式;(2)令,求数列前n项和
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】直接使用点到直线距离公式代入即可.【详解】由点到直线距离公式得故选:B2、B【解析】化简函数解析式,求解最小正周期,判断选项A,利用整体法求解函数的对称中心和单调递增区间,判断选项BC,再由图象变换法则判断选项D.【详解】,所以函数的最小正周期为,A错;令,得,所以函数图象关于点对称,B正确;由,得,所以函数在上为增函数,在上为减函数,C错;函数的图象向右平移个单位得,D错.故选:B3、B【解析】由题意求出函数的导函数,然后令即可求解【详解】因为,所以,则,故选:4、A【解析】将化成,即可求出的最小值【详解】由可化为,所以,解得,因此最小值是故选:A5、B【解析】利用题设中的等式,把的表达式转化成展开后,利用基本不等式求得的最小值【详解】∵,,,∴=,当且仅当,即时等号成立故选:B6、D【解析】根据直线和直线,直线和平面的位置关系依次判断每一个选项得到答案.【详解】若,则平行于过的平面与的交线,当时,,则存在无数条直线,使得,A正确;若,垂直于平面中的所有直线,则存在无数条直线,使得,B正确;若存在无数条直线,使得,,,则,C正确;当时,存在无数条直线,使得,D错误.故选:D.7、A【解析】利用导数分析函数的单调性,可求得该函数的极小值.【详解】对函数求导得,令,可得或,列表如下:减极小值增极大值减所以,函数的极小值为.故选:A.8、A【解析】当时,显然不成立,当时,分离变量,利用导数求得函数的单调性与最值,即可求解.【详解】当时,可得显然不成立;当时,由于方程可转化为,令,可得,当时,,函数单调递增;当时,,函数单调递减,所以当时,函数取唯一的极大值,也是最大值,所以,所以,即,所以实数m的取值范围.故选:A.9、C【解析】分别求出当、“是单调递增数列”时实数的取值范围,利用集合的包含关系判断可得出结论.【详解】已知,若,即,解得.若数列是单调递增数列,对任意的,,即,所以,对任意的恒成立,故,因此,“”是“是单调递增数列”充要条件.故选:C.10、A【解析】设圆的圆心,表示出半径,再由圆心到切线距离等于半径即可列出方程求得参数及圆的方程.【详解】∵圆的圆心在直线上,∴设圆心为(a,-a),∵圆过,∴半径r=,又∵圆与相切,∴半径r=,则,解得a=2,故圆心为(2,-2),半径为,故方程为.故选:A.11、C【解析】设等差数列的公差为q,根据,,成等比数列,利用等比中项求得公差,再由等差数列前n项和公式求解.【详解】设等差数列的公差为q,因为,且,,成等比数列,所以,解得,所以,所以当12或13时,取得最大值,故选:C12、C【解析】结合基本不等式求得所求的最小值.【详解】,,当且仅当时等号成立.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用基本不等式得出取得最大值时的条件结合可知,再利用点在椭圆方程上,故可求得、的值,进而求出椭圆的面积.详解】由基本不等式可得,当且仅当时取得最大值,由可知,∵椭圆经过点,∴,解得,,则椭圆的面积为.故答案为:.14、3【解析】先求点坐标,再由已知得Q点坐标,由列方程得解.【详解】抛物线:()的焦点,∵P为上一点,与轴垂直,所以P的横坐标为,代入抛物线方程求得P的纵坐标为,不妨设,因为Q为轴上一点,且,所以Q在F的右侧,又,,,因为,所以,,所以3故答案为:3.15、1【解析】根据,由求解.【详解】因为向量,且,所以,即,解得.故答案为:116、【解析】根据题意,归纳总结,结合等比数列的前项和公式,即可求得的通项公式.【详解】结合已知条件,归纳总结如下:第一个图案中,着色正方形的面积即;第二个图案中,新着色的正方形面积是,故着色正方形的面积即;第三个图案中,新着色的正方形面积是,故着色正方形的面积即;第个图案中,新着色的正方形面积是,故着色正方形的面积即.故.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)①证明见解析;②直线过定点;【解析】(1)依题意得到方程组,解得,即可求出椭圆方程;(2)①由(1)可得,,设,,表示出直线的方程,即可求出点坐标,从而得到、,即可求出;②在直线方程中令,即可得到的坐标,再求出直线的斜率,即可得到直线的方程,从而求出定点坐标;【小问1详解】解:依题意可得,即,解得或(舍去),所以,所以椭圆方程为【小问2详解】解:①由(1)可得,,设,,则直线的方程为,令则,所以,,所以,又点在椭圆上,所以,即,所以,即为定值;②因为直线的方程为,令则,因为,所以,所以直线的方程为,即又,所以,令,解得,所以直线过定点;18、(1);(2)存在,理由见解析.【解析】(1)根据题意用定义法求解轨迹方程;(2)在第一问的基础上,设出直线l的方程,联立椭圆方程,用韦达定理表达出两根之和,两根之积,求出直线l的垂直平分线,从而得到D点坐标,证明出结论.【小问1详解】由题意得:,所以,,而,故动点P的轨迹E的方程为以点、为焦点的椭圆方程,由得:,,所以动点P的轨迹E的方程为;【小问2详解】存,理由如下:显然,直线l的斜率存在,设为,联立椭圆方程得:,设,,则,,要想以DA、DB为邻边的平行四边形为菱形,则点D为AB垂直平分线上一点,其中,,则,故AB的中点坐标为,则AB的垂直平分线为:,令得:,且无论为何值,,点D在线段上,满足题意.19、(1)C是以点,为左右焦点的椭圆,(2)【解析】(1)根据椭圆的定义即可得到答案.(2)当垂直于轴时,,舍去.当不垂直于轴时,可设,再根据题意结合韦达定理求解即可.【小问1详解】因为,,所以C是以点,为左右焦点的椭圆.于是,,故,因此C的方程为.【小问2详解】当垂直于轴时,,,舍去.当不垂直于轴时,可设,代入可得.因为,设,,则,.因为,所以.同理.因此.由可得,,于是.根据椭圆定义可知,于是.20、(1)证明见解析,(2)【解析】(1)将直线方程化为,解方程得出定点;(2)求出圆心到直线的距离,再由几何法得出弦长.【小问1详解】证明:因为直线,所以.令,解得,所以不论取何值,直线必过定点【小问2详解】当时,直线为,圆心圆心到直线的距离,则21、(1)证明见解析;(2)【解析】(1)利用面面垂直的性质,证得平面,进而可得,平面即可得证;(2)在平面ABC内过点A作Ax⊥AB,以A为原点建立空间直角坐标系,借助空间向量而得解.【详解】(1)因为,为中点,所以,因为是矩形,所以,因为平面平面,平面平面,平面,所以平面,因为平面,所以,又,平面,,所以平面,又平面,所以平面平面;(2)在平面A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年厦门软件职业技术学院单招职业倾向性测试题库及参考答案详解1套
- 2026年天津海运职业学院单招职业倾向性考试题库及答案详解1套
- 2026年甘肃林业职业技术学院单招职业技能测试题库参考答案详解
- 2026年湖北三峡职业技术学院单招职业适应性考试题库含答案详解
- 2026年郑州汽车工程职业学院单招综合素质考试题库及参考答案详解
- 2026年辽宁工程职业学院单招职业技能考试题库及完整答案详解1套
- 阿坝消防员面试题及答案
- 抖音电商融资协议书范本
- 2025年海南省检验检测研究院考核招聘事业编制专业技术人员备考题库及完整答案详解1套
- 2025年吴川市县域医疗卫生共同体公开招聘编制外工作人员134人备考题库有答案详解
- 2025湖南语文高考试题及答案
- DTP药房培训课件
- 2025至2030年中国茶叶电商行业市场深度分析及投资战略规划研究报告
- 2025至2030车身广告行业项目调研及市场前景预测评估报告
- 船舶危险源 机舱风险源清单
- 物业工程维修培训内容
- 介入室操作规范与岗位职责流程
- 媒体部门主任个人述职报告范文
- 工业区位因素主题高一地理人教版(2019)必修二
- 严重精神障碍患者家庭护理-培训课件
- 2025-2030中国碘化铑行业需求潜力及产销规模预测报告
评论
0/150
提交评论