安徽省池州市第二中学2026届高一上数学期末教学质量检测模拟试题含解析_第1页
安徽省池州市第二中学2026届高一上数学期末教学质量检测模拟试题含解析_第2页
安徽省池州市第二中学2026届高一上数学期末教学质量检测模拟试题含解析_第3页
安徽省池州市第二中学2026届高一上数学期末教学质量检测模拟试题含解析_第4页
安徽省池州市第二中学2026届高一上数学期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省池州市第二中学2026届高一上数学期末教学质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,以为直径在正方形内部作半圆,为半圆上与不重合的一动点,下面关于的说法正确的是A.无最大值,但有最小值B.既有最大值,又有最小值C.有最大值,但无最小值D.既无最大值,又无最小值2.设a,b,c均为正数,且,,,则a,b,c的大小关系是()A. B.C. D.3.已知直线经过点,倾斜角的正弦值为,则的方程为()A. B.C. D.4.函数f(x)=sin(x+)+cos(x-)的最大值是()A. B.C.1 D.5.已知函数(其中为自然对数的底数,…),若实数满足,则()A. B.C. D.6.下列四个式子中是恒等式的是()A. B.C. D.7.已知函数在区间上的值域为,对任意实数都有,则实数的取值范围是()A. B.C. D.8.()A.1 B.C. D.9.4×100米接力赛是田径运动中的集体项目.一根小小的木棒,要四个人共同打造一个信念,一起拼搏,每次交接都是信任的传递.甲、乙、丙、丁四位同学将代表高一年级参加校运会4×100米接力赛,教练组根据训练情况,安排了四人的交接棒组合.已知该组合三次交接棒失误的概率分别是p1,p2,A.p1pC.1-p110.已知角的终边过点,则等于()A.2 B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数的定义域和值域都是集合,其定义如表所示,则____________.x01201212.函数的单调递减区间为__13.已知表示这个数中最大的数.能够说明“对任意,都有”是假命题的一组整数的值依次可以为_____14.已知函数,则________.15.已知角的终边经过点,则__16.在三棱锥中,,,,则三棱锥的外接球的表面积为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线与相交于点,直线(1)若点在直线上,求的值;(2)若直线交直线,分别为点和点,且点的坐标为,求的外接圆的标准方程18.如图,已知圆心在x轴正半轴上的圆C与直线5x+12y+21=0相切,与y轴交于M,N两点且∠MCN=120°.(1)求圆C的标准方程;(2)求过点P(0,3)的直线l与圆C交于不同的两点D,E,若|DE|=2,求直线l的方程.19.函数的定义域为D,若存在正实数k,对任意的,总有,则称函数具有性质.(1)判断下列函数是否具有性质,并说明理由.①;②;(2)已知为二次函数,若存在正实数k,使得函数具有性质.求证:是偶函数;(3)已知为给定的正实数,若函数具有性质,求的取值范围.20.已知函数(Ⅰ)求在区间上的单调递增区间;(Ⅱ)若,,求的值21.在①;②函数为偶函数:③0是函数的零点这三个条件中选一个条件补充在下面问题中,并解答下面的问题问题:已知函数,,且______(1)求函数的解析式;(2)判断函数在区间上的单调性,并用定义证明注:如果选择多个条件分别解答,按第一个解答计分

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】设正方形的边长为2,如图建立平面直角坐标系,则D(-1,2),P(cosθ,sinθ),(其中0<θ<π),∵cosθ∈(-1,1),∴∈(4,16).故选D.点睛:本题考查了向量的加法及向量模的计算,利用建系的方法,引入三角函数来解决使得思路清晰,计算简便,遇见正方形,圆,等边三角形,直角三角形等特殊图形常用建系的方法.2、C【解析】将分别看成对应函数的交点的横坐标,在同一坐标系作出函数的图像,数形结合可得答案.【详解】在同一坐标系中分别画出,,的图象,与的交点的横坐标为,与的图象的交点的横坐标为,与的图象的交点的横坐标为,从图象可以看出故选:C3、D【解析】由题可知,则∵直线经过点∴直线的方程为,即故选D4、A【解析】先利用三角恒等变化公式将函数化成形式,然后直接得出最值.【详解】整理得,利用辅助角公式得,所以函数的最大值为,故选A.【点睛】三角函数求最值或者求值域一定要先将函数化成的形函数.5、B【解析】化简得到,得到,进而得到,即可求解.【详解】由题意,函数,可得,可得,即,因为,所以.故选:B.6、D【解析】,故错误,故错误,故错误故选7、D【解析】根据关于对称,讨论与的关系,结合其区间单调性及对应值域求的范围.【详解】由题设,,易知:关于对称,又恒成立,当时,,则,可得;当时,,则,可得;当,即时,,则,即,可得;当,即时,,则,即,可得;综上,.故选:D.【点睛】关键点点睛:利用分段函数的性质,讨论其对称轴与给定区间的位置关系,结合对应值域及求参数范围.8、A【解析】直接利用诱导公式和两角和的正弦公式求出结果【详解】,故选:9、C【解析】根据对立事件和独立事件求概率的方法即可求得答案.【详解】由题意,三次交接棒不失误的概率分别为:1-p1,1-故选:C.10、B【解析】由正切函数的定义计算【详解】由题意故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据表格从里层往外求即可.【详解】解:由表可知,.故答案为:.12、【解析】由根式内部的代数式大于等于0,求得原函数的定义域,再求出内层函数的减区间,即可得到原函数的减区间【详解】由,得或,令,该函数在上单调递减,而y=是定义域内的增函数,∴函数的单调递减区间为故答案为:13、(答案不唯一)【解析】首先利用新定义,再列举命题为假命题的一组数值,再根据定义,验证命题是假命题.【详解】设,,则,而,,故命题为假命题,故依次可以为故答案为:(答案不唯一)14、7【解析】根据题意直接求解即可【详解】解:因为,所以,故答案为:715、【解析】根据终边上的点可得,再应用差角正弦公式求目标式的值.【详解】由题设,,所以.故答案为:.16、【解析】构造长方体,使得面上的对角线长分别为4,5,,则长方体的对角线长等于三棱锥P-ABC外接球的直径,即可求出三棱锥P-ABC外接球的表面积【详解】∵三棱锥P−ABC中,PA=BC=4,PB=AC=5,PC=AB=,∴构造长方体,使得面上的对角线长分别为4,5,,则长方体的对角线长等于三棱锥P−ABC外接球的直径.设长方体的棱长分别为x,y,z,则,∴三棱锥P−ABC外接球的直径为,∴三棱锥P−ABC外接球的表面积为.故答案为:26π.【点睛】本题主要考查三棱锥外接球表面积的求法,属于难题.要求外接球的表面积和体积,关键是求出球的半径,求外接球半径的常见方法有:①若三条棱两垂直则用(为三棱的长);②若面(),则(为外接圆半径);③可以转化为长方体的外接球;④特殊几何体可以直接找出球心和半径.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)求出两直线的交点P坐标,代入方程可得;(2)把B坐标代入方程可得,由方程联立可解得A点坐标,可设圆的一般方程,代入三点坐标后可解得其中的参数,最后再配方可得标准方程试题解析:(1)又P在直线l3上,,(2)在l3上,,联立l3,l1得:设△PAB的外接圆方程为x2+y2+Dx+Ey+F=0把P(0,1),A(1,0),B(3,2)代入得:△PAB的外接圆方程为x2+y2x+2y=0,即(x)2+(y+1)2=5点睛:第(2)题中求圆的方程,可不设圆方程的一般式,用以下方法求解:由于l1⊥l2,所以PAPB△PAB的外接圆是以AB为直径的圆外接圆方程为:(x)(x)+y(y+1)=0整理后得:(x)2+(y+1)2=518、(1)(x﹣1)2+y2=4;(2)y或x=0【解析】(1)由题意设圆心为,且,再由已知求解三角形可得,于是可设圆的标准方程为,由点到直线的距离列式求得值,则圆的标准方程可求;(2)当直线的斜率存在时,设直线的方程为,即,利用圆心到直线的距离等于半径列式求得,可得直线方程,验证当时满足题意,则答案可求【详解】解:(1)由题意设圆心为,且,由,可得中,,,则,于是可设圆的标准方程为,又点到直线的距离,解得或(舍去)故圆的标准方程为;(2)当直线的斜率存在时,设直线的方程为,即则由题意可知,圆心到直线的距离故,解得又当时满足题意,故直线的方程为或【点睛】本题考查圆的标准方程的求法,考查直线与圆位置关系的应用,考查计算能力,是中档题.19、(1)具有性质;不具有性质;(2)见解析;(3)【解析】(1)根据定义即可求得具有性质;根据特殊值即可判断不具有性质;(2)利用反证法,假设二次函数不是偶函数,根据题意推出与题设矛盾即可证明;(3)根据题意得到,再根据具有性质,得到,解不等式即可.【详解】解:(1),定义域为,则有,显然存在正实数,对任意的,总有,故具有性质;,定义域为,则,当时,,故不具有性质;(2)假设二次函数不是偶函数,设,其定义域为,即,则,易知,是无界函数,故不存在正实数k,使得函数具有性质,与题设矛盾,故是偶函数;(3)的定义域为,,具有性质,即存在正实数k,对任意的,总有,即,即,即,即,即,即,通过对比解得:,即.【点睛】方法点睛:应用反证法时必须先否定结论,把结论的反面作为条件,且必须根据这一条件进行推理,否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法.所谓矛盾主要指:①与已知条件矛盾;②与假设矛盾;③与定义、公理、定理矛盾;④与公认的简单事实矛盾;⑤自相矛盾.20、(Ⅰ),;(Ⅱ).【解析】(Ⅰ)利用三角恒等变换思想化简函数的解析式为,求得函数在上的单调递增区间,与取交集可得出结果;(Ⅱ)由可得出,利用同角三角函数的基本关系可求得的值,利用两角和的正弦公式可求得的值详解】(Ⅰ)令,,得,令,得;令,得.因此,函数在区间上的单调递增区间为,;(Ⅱ)由,得,,又,,因此,【点睛】本题考查正弦型函数的单调区间的求解,同时也考查了利用两角和的正弦公式求值,考查计算能力,属于中等题.21、(1)(2)单调递增,证明见解析【解析】(1)若选条件①,根据及指数对数恒等式求出的值,即可求出函数解析式;若选条件②,根据,即可得到,从而求出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论