版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海南洋模范2026届数学高一上期末统考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知角α的终边经过点,则()A. B.C. D.2.设m,n是两条不同直线,,是两个不同的平面,下列命题正确的是A.,且,则B.,,,,则C.,,,则D.,且,则3.已知函数,若,且当时,则的取值范围是A. B.C. D.4.若函数和.分别由下表给出:011012301则不等式的解集为()A. B.C. D.5.已知集合,,则A∩B中元素的个数为()A.2 B.3C.4 D.56.如图,是水平放置的的直观图,其中,,分别与轴,轴平行,则()A.2 B.C.4 D.7.1弧度的圆心角所对的弧长为6,则这个圆心角所夹的扇形的面积是()A.3 B.6C.18 D.368.函数f(x)=在[—π,π]的图像大致为A. B.C. D.9.函数的零点是A. B.C. D.10.设函数,则下列函数中为奇函数的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知点,,则以线段为直径的圆的标准方程是__________12.命题“”的否定是________13.若函数是R上的减函数,则实数a的取值范围是___14.若函数在区间上有两个不同的零点,则实数a的取值范围是_________.15.已知函数,则___________.16.函数的最小正周期为,且.当时,则函数的对称中心__________;若,则值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,函数.(Ⅰ)当时,解不等式;(Ⅱ)若关于的方程的解集中恰有一个元素,求的取值范围;(Ⅲ)设,若对任意,函数在区间上的最大值与最小值的和不大于,求的取值范围.18.已知函数.(1)求函数的最小正周期及单调递增区间;(2)求函数在区间上的值域.19.已知集合,集合(1)当时,求;(2)若,求实数的取值范围在①;②“”是“”的充分条件;③这三个条件中任选一个,补充到本题第(2)问的横线处,并解答注:如果选择多个条件分别解答,按第一个解答计分20.已知圆经过(2,5),(﹣2,1)两点,并且圆心在直线yx上.(1)求圆的标准方程;(2)求圆上的点到直线3x﹣4y+23=0的最小距离.21.某乡镇为打造成“生态农业特色乡镇”,决定种植某种水果,该水果单株产量(单位:千克)与施用肥料(单位:千克)满足如下关系:,单株成本投入(含施肥、人工等)为元.已知这种水果的市场售价为15元/千克,且销路畅通供不应求,记该水果树的单株利润为(单位:元).(1)求的函数关系式;(2)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】推导出,,,再由,求出结果【详解】∵角的终边经过点,∴,,,∴故选:D2、D【解析】对每一个命题逐一判断得解.【详解】对于A,若m∥α,n∥β且α∥β,说明m、n是分别在平行平面内的直线,它们的位置关系应该是平行或异面或相交,故A不正确;对于B,若“m⊂α,n⊂α,m∥β,n∥β”,则“α∥β”也可能α∩β=l,所以B不成立对于C,根据面面垂直的性质,可知m⊥α,n⊂β,m⊥n,∴n∥α,∴α∥β也可能α∩β=l,也可能α⊥β,故C不正确;对于D,由m⊥α,n⊥β且α⊥β,则m与n一定不平行,否则有α∥β,与已知α⊥β矛盾,通过平移使得m与n相交,且设m与n确定的平面为γ,则γ与α和β的交线所成的角即为α与β所成的角,因为α⊥β,所以m与n所成的角为90°,故命题D正确故答案为D【点睛】本题考查直线与平面平行与垂直,面面垂直的性质和判断的应用,考查逻辑推理能力和空间想象能力.3、B【解析】首先确定函数的解析式,然后确定的取值范围即可.【详解】由题意可知函数关于直线对称,则,据此可得,由于,故令可得,函数的解析式为,则,结合三角函数的性质,考查临界情况:当时,;当时,;则的取值范围是.本题选择B选项.【点睛】本题主要考查三角函数的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.4、C【解析】根据题中的条件进行验证即可.【详解】当时,有成立,故是不等式的解;当时,有不成立,故不是不等式的解;当时,有成立,故是不等式的解.综上:可知不等式的解集为.故选:C5、B【解析】采用列举法列举出中元素的即可.【详解】由题意,,故中元素的个数为3.故选:B【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.6、D【解析】先确定是等腰直角三角形,求出,再确定原图的形状,进而求出.【详解】由题意可知是等腰直角三角形,,其原图形是,,,,则,故选:D.7、C【解析】由弧长的定义,可求得扇形的半径,再由扇形的面积公式,即可求解.【详解】由1弧度的圆心角所对的弧长为6,利用弧长公式,可得,即,所以扇形的面积为.故选C.【点睛】本题主要考查了扇形的弧长公式和扇形的面积公式的应用,着重考查了计算能力,属于基础题.8、D【解析】先判断函数的奇偶性,得是奇函数,排除A,再注意到选项的区别,利用特殊值得正确答案【详解】由,得是奇函数,其图象关于原点对称.又.故选D【点睛】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养.采取性质法或赋值法,利用数形结合思想解题9、B【解析】函数y=x2-2x-3的零点即对应方程的根,故只要解二次方程即可【详解】由y=x2-2x-3=(x-3)(x+1)=0,得到x=3或x=-1,所以函数y=x2-2x-3的零点是3和-1故选B【点睛】本题考查函数的零点的概念和求法.属基本概念、基本运算的考查10、A【解析】分别求出选项的函数解析式,再利用奇函数的定义即可得选项.【详解】由题意可得,对于A,是奇函数,故A正确;对于B,不是奇函数,故B不正确;对于C,,其定义域不关于原点对称,所以不是奇函数,故C不正确;对于D,,其定义域不关于原点对称,不是奇函数,故D不正确.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】,,中点坐标为,圆的半径以为直径的圆的标准方程为,故答案为.12、【解析】由否定的定义写出即可.【详解】命题“”的否定是“”故答案为:13、【解析】按照指数函数的单调性及端点处函数值的大小关系得到不等式组,解不等式组即可.【详解】由题知故答案为:.14、【解析】首先根据函数的解析式确定,再利用换元法将函数在区间上有两个不同的零点的问题,转化为方程区间上有两个不同根的问题,由此列出不等式组解得答案.【详解】函数在区间上有两个不同的零点,则,故由可知:,当时,,显然不符合题意,故,又函数在区间上有两个不同的零点,等价于在区间上有两个不同的根,设,则函数在区间上有两个不同的根,等价于在区间上有两个不同的根,由得,要使区间上有两个不同的根,需满足a2-5a+1>06a故答案为:15、【解析】利用函数的解析式由内到外逐层计算可得的值.【详解】因为,则,故.故答案为:.16、①.②.【解析】根据最小正周期以及关于的方程求解出的值,根据对称中心的公式求解出在上的对称中心;先求解出的值,然后根据角的配凑结合两角差的正弦公式求解出的值.【详解】因为最小正周期为,所以,又因为,所以,所以或,又因为,所以,所以,所以,令,所以,又因为,所以,所以对称中心为;因为,,所以,若,则,不符合,所以,所以,所以,故答案为:;.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ);(Ⅲ).【解析】(Ⅰ)当时,利用对数函数的单调性,直接解不等式即可;(Ⅱ)化简关于的方程,通过分离变量推出的表达式,通过解集中恰有一个元素,利用二次函数的性质,即可求的取值范围;(Ⅲ)在上单调递减利用复合函数的单调性求解函数的最值,令,化简不等式,转化求解不等式的最大值,然后推出的范围.【详解】(Ⅰ)当时,,∴,整理得,解得.所以原不等式的解集为.(Ⅱ)方程,即为,∴,∴,令,则,由题意得方程在上只有一解,令,,转化为函数与的图象在上只有一个交点.则分别作出函数与的图象,如图所示结合图象可得,当或时,直线y=a和的图象只有一个公共点,即方程只有一个解所以实数范围为.(Ⅲ)因为函数在上单调递减,所以函数定义域内单调递减,所以函数在区间上的最大值为,最小值为,所以由题意得,所以恒成立,令,所以恒成立,因为在上单调递增,所以∴,解得,又,∴所以实数的取值范围是.【点睛】解答此类题时注意以下几点:(1)对于复合函数的单调性,可根据“同增异减”的方法进行判断;(2)已知方程根的个数(函数零点的个数)求参数范围时,可通过解方程的方法求解,对于无法解方程的,可通过分离、构造函数的方法转化为函数图象公共点个数的问题处理(3)解不等式的恒成立问题时,通常采取分离参数的方法,将问题转化为求函数的最值的问题18、(1)最小正周期为,单调递增区间为;(2).【解析】(1)利用三角恒等变换化简得出,利用正弦型函数的周期公式可求得函数的最小正周期,解不等式可得出函数的单调递增区间;(2)由可求得的取值范围,利用正弦型函数的基本性质可求得函数的值域.【小问1详解】解:,所以,函数的最小正周期为,由得,故函数的单调递增区间为.【小问2详解】解:当时,,,所以,,即函数在区间上的值域为.19、(1)或(2)【解析】(1)根据集合的补集与交集定义运算即可;(2)选①②③中任何一个,都可以转化为,讨论与求解即可【小问1详解】化简集合有当时,,则或故或【小问2详解】选①②③中任何一个,都可以转化为(ⅰ)当时,,即时,(ⅱ)当时,若,则,解得综上(ⅰ)(ⅱ),实数的取值范围是20、(1)(x﹣2)2+(y﹣1)2=16(2)1【解析】(1)先求出圆心的坐标和圆的半径,即得圆的标准方程;(2)求出圆心到直线3x﹣4y+23=0的距离即得解.【详解】(1)A(2,5),B(﹣2,1)中点为(0,3),经过A(2,5),B(﹣2,1)的直线的斜率为,所以线段AB中垂线方程为,联立直线方程y解得圆心坐标为(2,1),所以圆的半径.所以圆的标准方程为(x﹣2)2+(y﹣1)2=16.(2)圆的圆心为(2,1),半径r=4.圆心到直线3x﹣4y+23=0的距离d.则圆上的点到直线3x﹣4y+23=0的最小距离为d﹣r=1.【点睛】本题主要考查圆的标准方程的求法和圆上的点到直线的距离的最值的求法,意在考查学生对这些知识的理解掌握水平.21、(1);(2)4千克,505元.【解析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大鼠肢体缺血再灌注早期血栓前状态及干预策略的深度剖析
- 安康鸿志学校教师招聘考试真题2024
- 广州展会营销方案(3篇)
- 彩绘面具课件
- 中国人民银行所属企业网联清算有限公司2026年度校园招聘26人备考题库及完整答案详解1套
- 2025年中考语文文学常识总结
- 网信息维护协议书
- 2025年厦门市民政局补充非在编工作人员招聘备考题库参考答案详解
- 2025年民生银行深圳分行社会招聘备考题库带答案详解
- 2025年中国兵器工业集团航空弹药研究院有限公司公开招聘安全总监备考题库及1套参考答案详解
- 污水处理厂工程初步设计说明书
- 铝合金车身轻量化技术-洞察与解读
- 2025年Dell服务器技术支持服务协议范本
- 2025江苏盐城市水务集团有限公司招聘专业人员34人笔试题库历年考点版附带答案详解
- 学堂在线 雨课堂 学堂云 实验室安全密码 章节测试答案
- 华为培训心得体会
- 电力工程技术档案管理制度
- 2025国考银行结构化面试题库及答案解析
- MCN机构与抖音达人签约协议范本7篇
- 光学镜片制作工基础考核试卷及答案
- 胶带生产线投资可行性研究报告
评论
0/150
提交评论