版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届山东省东营市利津一中高一数学第一学期期末质量跟踪监视试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若a=40.9,b=log415,c=80.4,则()A.b>c>a B.a>b>cC.c>a>b D.a>c>b2.下列四个函数中,与函数相等的是A. B.C. D.3.已知等边的边长为2,为内(包括三条边上)一点,则的最大值是A.2 B.C.0 D.4.已知,则“”是“”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分又非必要条件5.已知函数为偶函数,则A.2 B.C. D.6.平行四边形中,,,,点满足,则A.1 B.C.4 D.7.将函数的图象向左平移个单位长度,再向上平移1个单位长度,得到的图象,若,且,则的最大值为A. B.C. D.8.已知直线ax+4y-2=0与2x-5y+b=0互相垂直,垂足为(1,c),则a+b+c的值为()A.-4 B.20C.0 D.249.简谐运动可用函数表示,则这个简谐运动的初相为()A. B.C. D.10.设.若存在,使得,则的最小值是()A.2 B.C.3 D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的值域为_____________12.若函数在区间上没有最值,则的取值范围是______.13.将函数的图象向左平移个单位长度后得到的图象,则__________.14.已知函数,关于方程有四个不同的实数解,则的取值范围为__________15.已知扇形的弧长为,且半径为,则扇形的面积是__________.16.已知半径为3的扇形面积为,则这个扇形的圆心角为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)判断函数f(x)的单调性并给出证明;(2)若存在实数a使函数f(x)是奇函数,求a;(3)对于(2)中的a,若,当x∈[2,3]时恒成立,求m的最大值18.甲、乙两人进行射击比赛,各射击4局,每局射击10次,射击命中目标得1分,未命中目标得0分.两人4局的得分情况如下:甲6699乙79xy(1)若乙的平均得分高于甲的平均得分,求x的最小值;(2)设,,现从甲、乙两人的4局比赛中随机各选取1局,并将其得分分别记为a,b,求的概率;(3)在4局比赛中,若甲、乙两人的平均得分相同,且乙的发挥更稳定,写出x的所有可能取值.(结论不要求证明)19.已知函数(1)若是定义在上的偶函数,求实数的值;(2)在(1)条件下,若,求函数的零点20.已知函数.(1)在①,②这两个条件中任选一个,补充在下面的横线上,并解答.问题:已知函数___________,,求的值域.注:如果选择两个条件分别解答,按第一个解答计分.(2)若,,,求的取值范围.21.设集合存在正实数,使得定义域内任意x都有.(1)若,证明;(2)若,且,求实数a的取值范围;(3)若,,且、求函数的最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】把化为以为底的指数和对数,利用中间值“”以及指数函数的单调性即可比较大小.【详解】,,,又因为为增函数,所以,即综上可得,a>c>b故选:D【点睛】本题考查了利用中间值以及函数的单调性比较数的大小,属于基础题.2、D【解析】分别化简每个选项的解析式并求出定义域,再判断是否与相等.【详解】A选项:解析式为,定义域为R,解析式不相同;B选项:解析式为,定义域为,定义域不相同;C选项:解析式为,定义域为,定义域不相同;D选项:解析式为,定义域为R,符合条件,答案为D.【点睛】函数相等主要看:(1)解析式相同;(2)定义域相同.属于基础题.3、A【解析】建立如图所示的平面直角坐标系,则,设点P的坐标为,则故令,则t表示内(包括三条边上)上的一点与点间的距离的平方.结合图形可得当点与点B或C重合时t可取得最大值,且最大值为,故的最大值为.选A点睛:通过建立坐标系,将问题转化为向量的坐标运算可使得本题的解答代数化,在得到向量数量积的表达式后,根据表达式的特征再利用数形结合的思路求解是解题的关键,借助图形的直观性可容易得到答案4、A【解析】“a>1”⇒“”,“”⇒“a>1或a<0”,由此能求出结果【详解】a∈R,则“a>1”⇒“”,“”⇒“a>1或a<0”,∴“a>1”是“”的充分非必要条件故选A【点睛】充分、必要条件的三种判断方法
定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件
等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法
集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件5、A【解析】由偶函数的定义,求得的解析式,再由对数的恒等式,可得所求,得到答案【详解】由题意,函数为偶函数,可得时,,,则,,可得,故选A【点睛】本题主要考查了分段函数的运用,函数的奇偶性的运用,其中解答中熟练应用对数的运算性质,正确求解集合A,再根据集合的运算是解答的关键,着重考查了推理与运算能力,属于基础题.6、B【解析】选取,为基向量,将,用基向量表示后,再利用平面向量数量积的运算法则求解数量积.【详解】,,,故选B【点睛】本题考查了平面向量的运算法则以及向量数量积的性质及其运算,属中档题.向量的运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和).7、A【解析】分析:利用三角函数的图象变换,可得,由可得,取,取即可得结果.详解:的图象向左平移个单位长度,再向上平移1个单位长度,得到,,且,,,因为,所以时,取为最小值;时,取为最大值最大值为,故选A.点睛:本题主要考查三角函数图象的变换以及三角函数的性质,属于中档题.能否正确处理先周期变换后相位变换这种情况下图象的平移问题,反映学生对所学知识理解的深度.8、A【解析】由垂直求出,垂足坐标代入已知直线方程求得,然后再把垂僄代入另一直线方程可得,从而得出结论【详解】由直线互相垂直可得,∴a=10,所以第一条直线方程为5x+2y-1=0,又垂足(1,c)在直线上,所以代入得c=-2,再把点(1,-2)代入另一方程可得b=-12,所以a+b+c=-4.故选:A9、B【解析】根据初相定义直接可得.【详解】由初相定义可知,当时的相位称为初相,所以,函数的初相为.故选:B10、D【解析】由题设在上存在一个增区间,结合、且,有必为的一个子区间,即可求的范围.【详解】由题设知:,,又,所以在上存在一个增区间,又,所以,根据题设知:必为的一个子区间,即,所以,即的最小值是.故选:D.【点睛】关键点点睛:结合题设条件判断出必为的一个子区间.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用二倍角余弦公式可得令,结合二次函数的图象与性质得到结果.【详解】由题意得:令,则∵在上单调递减,∴的值域为:故答案为:【点睛】本题给出含有三角函数式的“类二次”函数,求函数的值域.着重考查了三角函数的最值和二次函数在闭区间上的值域等知识,属于中档题12、【解析】根据正弦函数的图像与性质,可求得取最值时的自变量值,由在区间上没有最值可知,进而可知或,解不等式并取的值,即可确定的取值范围.【详解】函数,由正弦函数的图像与性质可知,当取得最值时满足,解得,由题意可知,在区间上没有最值,则,,所以或,因为,解得或,当时,代入可得或,当时,代入可得或,当时,代入可得或,此时无解.综上可得或,即的取值范围为.故答案为:.【点睛】本题考查了正弦函数的图像与性质应用,由三角函数的最值情况求参数,注意解不等式时的特殊值取法,属于难题.13、0【解析】根据题意,可知将函数的图象向右平移个单位长度后得到,由函数图象的平移得出的解析式,即可得出的结果.【详解】解:由题意可知,将函数的图象向右平移个单位长度后得到,则,所以.故答案为:0.14、【解析】作出的图象如下:结合图像可知,,故令得:或,令得:,且等号取不到,故,故填.点睛:一般讨论函数零点个数问题,都要转化为方程根的个数问题或两个函数图像交点的个数问题,本题由于涉及函数为初等函数,可以考虑函数图像来解决,转化为过定点的直线与抛物线变形图形的交点问题,对函数图像处理能力要求较高.15、##【解析】由扇形面积公式可直接求得结果.【详解】扇形面积.故答案为:.16、【解析】由扇形的面积公式直接求解.【详解】由扇形面积公式,可得圆心角,故答案为:.【点睛】(1)在弧度制下,计算扇形的面积和弧长比在角度制下更方便、简捷(2)求扇形面积的最值应从扇形面积出发,在弧度制下使问题转化为关于α的不等式或利用二次函数求最值的方法确定相应最值.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)单调递增(2)见解析【解析】(1)根据单调性定义:先设再作差,变形化为因子形式,根据指数函数单调性确定因子符号,最后根据差的符号确定单调性(2)根据定义域为R且奇函数定义得f(0)=0,解得a=1,再根据奇函数定义进行验证(3)先根据参变分离将不等式恒成立化为对应函数最值问题:的最小值,再利用对勾函数性质得最小值,即得的范围以及的最大值试题解析:解:(1)不论a为何实数,f(x)在定义域上单调递增.证明:设x1,x2∈R,且x1<x2,则由可知,所以,所以所以由定义可知,不论为何值,在定义域上单调递增(2)由f(0)=a-1=0得a=1,经验证,当a=1时,f(x)是奇函数.(3)由条件可得:m2x=(2x+1)+-3恒成立.m(2x+1)+-3的最小值,x∈[2,3].设t=2x+1,则t∈[5,9],函数g(t)=t+-3在[5,9]上单调递增,所以g(t)的最小值是g(5)=,所以m,即m的最大值是.18、(1)5(2)(3)6,7,8【解析】(1)由题意得,又,即可求得x的最小值;(2)利用列举法能求出古典概型的概率;(3)由题设条件能求出的可能的取值为.【小问1详解】由题意得,即.又根据题意知,,所以x的最小值此为5.【小问2详解】设“从甲、乙的4局比赛中随机各选取1局,且得分满足”为事件,记甲的4局比赛为,各局的得分分别是;乙的4局比赛为,各局的得分分别是.则从甲、乙的4局比赛中随机各选取1局,所有可能的结果有16种,它们是:,,,,,,,,,,,,,,,.而事件的结果有8种,它们是:,,,,,,,,∴事件的概率.【小问3详解】的所有可能取值为6,7,8.19、(1);(2)有两个零点,分别为和【解析】(1)由函数为偶函数得即可求实数的值;(2),计算令,则即可.试题解析:(1)解:∵是定义在上的偶函数.∴,即故.经检验满足题意(2)依题意.则由,得,令,则解得.即.∴函数有两个零点,分别为和.20、(1)答案见解析(2)【解析】(1)根据复合函数的性质即可得到的值域;(2)令,求出其最小值,则问题转化为恒成立,进而求最小值即可.【小问1详解】选择①,,令,则,故函数的值域为R,即的值域为R.选择②,,令,则,因为函数单调递增,所以,即的值域为.【小问2详解】令.当时,,,;当时,,,.因为,所以的最小值为0,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026江苏省卫生健康委员会所属事业单位招聘807人笔试重点试题及答案解析
- 2026年湖南工程职业技术学院单招职业适应性测试题库含答案详解
- 2026年黑龙江护理高等专科学校单招职业技能测试题库附答案详解
- 软件测试职位常见问题及答案解析
- 2026年福建卫生职业技术学院单招综合素质考试题库及完整答案详解1套
- 2026年琼台师范学院单招职业技能考试题库带答案详解
- 2025福建漳州市交通发展集团有限公司招聘中一线岗位复面及相关事项备考笔试试题及答案解析
- 艾灸工艺课程设计
- 2026年中山职业技术学院单招职业倾向性考试题库含答案详解
- 求职成功秘诀供应链专员面试题解析
- 2025天津滨海新区建设投资集团招聘27人模拟笔试试题及答案解析
- 2026民航招飞心理测试题目及答案
- 医院收款员笔试题及答案
- 调色制作合同范本
- 2025年陕西岳文投资有限责任公司社会招聘参考模拟试题及答案解析
- 3D建模服务合同
- 企业业务合规审查参考模版
- 私人防水合同范本
- 医疗器械质量管理自查报告
- 压疮护理健康宣教
- 中医科宣教课件
评论
0/150
提交评论