版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届江苏省南京市江浦高级中学、六合高级中学、江宁高级中学三校高二数学第一学期期末监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.渐近线方程为的双曲线的离心率是()A.1 B.C. D.22.已知双曲线:与椭圆:有相同的焦点,且一条渐近线方程为:,则双曲线的方程为()A. B.C. D.3.已知双曲线=1的一条渐近线方程为x-4y=0,其虚轴长为()A.16 B.8C.2 D.14.两个圆和的位置是关系是()A.相离 B.外切C.相交 D.内含5.直线的斜率为()A.135° B.45°C.1 D.-16.已知圆,为圆外的任意一点,过点引圆的两条切线、,使得,其中、为切点.在点运动的过程中,线段所扫过图形的面积为()A. B.C. D.7.不等式的解集为()A.或 B.C. D.8.已知点在抛物线:上,则的焦点到其准线的距离为()A. B.C.1 D.29.已知三个顶点都在抛物线上,且为抛物线的焦点,若,则()A.6 B.8C.10 D.1210.直线分别与轴,轴交于A,B两点,点在圆上,则面积的取值范围是()A. B.C D.11.已知命题:,,命题:,,则()A.是假命题 B.是真命题C.是真命题 D.是假命题12.甲、乙两组数的数据如茎叶图所示,则甲、乙的平均数、方差、极差及中位数相同的是()A.极差 B.方差C.平均数 D.中位数二、填空题:本题共4小题,每小题5分,共20分。13.如果椭圆上一点P到焦点的距离等于6,则点P到另一个焦点的距离为____14.如图,将一个正方体沿相邻三个面的对角线截出一个棱锥,若该棱锥的体积为,则该正方体的边长为___________.15.已知直线与直线平行,则实数______16.已知直线与平行,则实数的值为_____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在三棱锥中,,,为的中点.(1)求证:平面;(2)若点在棱上,且,求点到平面的距离.18.(12分)已知椭圆C:()过点,且离心率为(1)求椭圆C的方程;(2)过点()的直线l(不与x轴重合)与椭圆C交于A,B两点,点C与点B关于x轴对称,直线AC与x轴交于点Q,试问是否为定值?若是,请求出该定值,若不是,请说明理由19.(12分)已知是等差数列,其n前项和为,已知(1)求数列的通项公式:(2)设,求数列的前n项和20.(12分)已知抛物线上任意一点到焦点F最短距离为2,(1)求抛物线C的方程;(2)过焦点F的直线,互相垂直,且与C分别交于A,B,M,N四点,求四边形AMBN面积的最小值21.(12分)已知双曲线及直线(1)若与有两个不同的交点,求实数的取值范围(2)若与交于,两点,且线段中点的横坐标为,求线段的长22.(10分)如图①,在梯形PABC中,,与均为等腰直角三角形,,,D,E分别为PA,PC的中点.将沿DE折起,使点P到点的位置(如图②),G为线段的中点.在图②中解决以下两个问题.(1)求证:平面平面;(2)若二面角为120°时,求CG与平面所成角的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据双曲线渐近线方程可确定a,b的关系,进而求得离心率.【详解】因为双曲线近线方程为,故双曲线为等轴双曲线,则a=b,故离心率为,则,故选:B.2、B【解析】由渐近线方程,设出双曲线方程,结合与椭圆有相同的焦点,求出双曲线方程.【详解】∵双曲线:的一条渐近线方程为:∴设双曲线:∵双曲线与椭圆有相同的焦点∴,解得:∴双曲线的方程为.故选:B.3、C【解析】根据双曲线的渐近线方程的特点,结合虚轴长的定义进行求解即可.【详解】因为双曲线=1的一条渐近线方程为x-4y=0,所以,因此该双曲线的虚轴长为,故选:C4、C【解析】根据圆的方程得出两圆的圆心和半径,再得出圆心距离与两圆的半径的关系,可得选项.【详解】圆的圆心为,半径,的圆心为,半径,则,所以两圆的位置是关系是相交,故选:C.【点睛】本题考查两圆的位置关系,关键在于运用判定两圆的位置关系一般利用几何法.即比较圆心之间的距离与半径之和、之差的大小关系,属于基础题.5、D【解析】由斜截式直接看出直线斜率.【详解】由题意得:直线斜率为-1,故选:D6、D【解析】连接、、,分析可知四边形为正方形,求出点的轨迹方程,分析可知线段所扫过图形为是夹在圆和圆的圆环,利用圆的面积公式可求得结果.【详解】连接、、,由圆的几何性质可知,,又因为且,故四边形为正方形,圆心,半径为,则,故点的轨迹方程为,所以,线段扫过的图形是夹在圆和圆的圆环,故在点运动的过程中,线段所扫过图形的面积为.故选:D.7、A【解析】根据一元二次不等式的解法可得答案.【详解】由不等式可得或不等式的解集为或故选:A8、B【解析】由点在抛物线上,求得参数,焦点到其准线的距离即为.【详解】由点在抛物线上,易知,,故焦点到其准线的距离为.故选:B.9、D【解析】设,,,由向量关系化为坐标关系,再结合抛物线的焦半径公式即可计算【详解】由得焦点,准线方程为,设,,由得则,化简得所以故选:D10、A【解析】把求面积转化为求底边和底边上的高,高就是圆上点到直线的距离.【详解】与x,y轴的交点,分别为,,点在圆,即上,所以,圆心到直线的距离为,所以面积的最小值为,最大值为.故选:A11、C【解析】先分别判断命题、的真假,再利用逻辑联结词“或”与“且”判断命题的真假.【详解】由题意,,所以,成立,即命题为真命题,,所以不存在,使得,即命题为假命题,所以是假命题,为真命题,所以是真命题,是假命题,是假命题,是真命题.故选:C12、C【解析】根据茎叶图依次计算甲和乙的平均数、方差、中位数和极差即可得到结果.【详解】甲的平均数为:;乙的平均数为:;甲和乙的平均数相同;甲的方差为:;乙的方差为:;甲和乙的方差不相同;甲的极差为:;乙的极差为:;甲和乙的极差不相同;甲的中位数为:;乙的中位数为:;甲和乙的中位数不相同.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、14【解析】根据椭圆的定义及椭圆上一点P到焦点的距离等于6,可得的长.【详解】解:根据椭圆的定义,又椭圆上一点P到焦点的距离等于6,,故,故答案:.【点睛】本题主要考查椭圆的定义及简单性质,相对简单.14、2【解析】根据体积公式直接计算即可.【详解】设正方体边长为,则,解得.故答案为:15、【解析】分类讨论,两种情况,结合直线平行的知识得出实数.【详解】当时,直线与直线垂直;当时,,则且,解得.故答案为:16、或【解析】根据平行线的性质进行求解即可.【详解】因为直线与平行,所以有:或,故答案为:或三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)【解析】(1)易得,再由勾股定理逆定理证明,即可得线面垂直;(2)根据(1)得,进而根据几何关系,利用等体积法求解即可.【详解】解:(1)连接,∵,是中点,∴,,又,,∴,∴,∵,∴,∴,,平面,∴平面;(2)∵点在棱上,且,,为的中点.∴,∴由余弦定理得,即,∴,由(1)平面,设点到平面的距离为∴,即,解得:所以点到平面的距离为.18、(1)(2)为定值【解析】(1)由题意可得解方程组求出,从而可得椭圆方程,(2)设直线AB:,,代入椭圆方程,消去,利用根与系数关系,再表示出直线AC的方程,从而可求出点Q的坐标,从而可表示出,然后化简可得结论【小问1详解】由题意得解得故椭圆C的方程为;【小问2详解】设直线AB:,,联立消去y得,设,,得,,因为点C与点B关于x轴对称,所以,所以直线AC的斜率为,直线AC的方程,令,解得可得,所以,因为,所以,所以为定值【点睛】关键点点睛:此题考查椭圆方程的求法,考查直线与椭圆的位置关系,解题的关键是将直线AB的方程代入椭圆方程中化简,利用根与系数关系,结合已知条件表示出直线AC的方程,从而可求出点Q的坐标,考查计算能力,属于中档题19、(1);(2).【解析】(1)利用等差数列的基本量,结合已知条件,列出方程组,求得首项和公差,即可写出通项公式;(2)根据(1)中所求,结合裂项求和法,即可求得.【小问1详解】因为是等差数列,其n前项和为,已知,设其公差为,故可得:,,解得,又,故.【小问2详解】由(1)知,,又,故.即.20、(1)(2)128【解析】(1)设抛物线上任一点为,由可得答案.(2)由题意可知,的斜率k存在且不为0,设出其方程并与抛物线方程联立,得出韦达定理,从而得出弦长的表达式,同理得出弦长的表达式,进而得出四边形AMBN面积的不等式,从而求出其最小值.【小问1详解】设抛物线上任一点为,则,所以当时,,又∵,∴,即所以抛物线C的方程为【小问2详解】设交抛物线C于点,,交抛物线C于点,由题意可知,的斜率k存在且不为0设的方程为由,得,同理可得,,当且仅当时,即时,等号成立∴四边形AMBN面积的最小值为12821、(1)且;(2)【解析】(1)联立直线与双曲线方程,利用方程组与两个交点,求出k的范围(2)设交点A(x1,y1),B(x2,y2),利用韦达定理以及弦长公式求解即可【详解】(1)联立y=2可得∵与有两个不同的交点,且,且(2)设,由(1)可知,又中点的横坐标为,,或又由(1)可知,为与有两个不同交点时,22、(1)证明见解析(2)【解析】(1)通过两个线面平行即可证明面面平行(2)以为坐标原点建立直角坐标系,通过空间向量的方法计算线面角的正弦值【小问1详解】如上图所示,在中,因为D,E分别为P
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国社会科学院考古研究所石窟寺考古研究室考古技师招聘备考题库完整参考答案详解
- 2024年唐山市事业单位招聘考试真题
- 2025年大理州强制隔离戒毒所公开招聘辅警5人备考题库及完整答案详解一套
- 青岛海明城市发展有限公司及全资子公司招聘考试真题2024
- 2025 九年级语文下册戏剧舞台设计意图课件
- 2025年广西百色市乐业县专业森林消防救援队伍招聘13人笔试重点题库及答案解析
- 河口县公安局公开招聘辅警(16人)备考考试试题及答案解析
- 2025-2026 学年高一 语文 期末冲刺卷 试卷及答案
- 国家知识产权局专利局专利审查协作北京中心福建分中心2026年度专利审查员公开招聘备考题库带答案详解
- 2025年互联网保险产品五年政策影响分析报告
- 麻醉科教学查房课件
- 工作秘密管理课件
- 一级建造师-水利工程实务电子教材
- 急救物品护理质量管理
- 2025-2030年中国地奥司明行业市场现状供需分析及投资评估规划分析研究报告
- 前列腺炎病人的护理
- 国家开放大学《理工英语4》期末机考题库
- 学校午休设备管理制度
- T/ZGZS 0302-2023再生工业盐氯化钠
- 联合创立品牌协议书
- 2025人教版(PEP)三年级英语上册期末专项复习:补全对话专项(附答案)
评论
0/150
提交评论