黑龙江省哈尔滨市六校2026届高二上数学期末质量检测试题含解析_第1页
黑龙江省哈尔滨市六校2026届高二上数学期末质量检测试题含解析_第2页
黑龙江省哈尔滨市六校2026届高二上数学期末质量检测试题含解析_第3页
黑龙江省哈尔滨市六校2026届高二上数学期末质量检测试题含解析_第4页
黑龙江省哈尔滨市六校2026届高二上数学期末质量检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省哈尔滨市六校2026届高二上数学期末质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在等差数列中,,,则的值是()A.130 B.260C.156 D.1682.已知、分别为双曲线的左、右焦点,且,点P为双曲线右支一点,为的内心,若成立,给出下列结论:①点的横坐标为定值a;②离心率;③;④当轴时,上述结论正确的是()A.①② B.②③C.①②③ D.②③④3.已知抛物线的焦点为,在抛物线上有一点,满足,则的中点到轴的距离为()A. B.C. D.4.已知函数为偶函数,且当时,,则不等式的解集为()A. B.C. D.5.椭圆的长轴长为()A. B.C. D.6.若在直线上,则直线的一个方向向量为()A. B.C. D.7.某程序框图如图所示,该程序运行后输出的值是()A. B.C. D.8.下列求导运算正确的是()A. B.C. D.9.各项均为正数的等比数列的前项和为,若,,则()A. B.C. D.10.设异面直线、的方向向量分别为,,则异面直线与所成角的大小为()A. B.C. D.11.与空间向量共线的一个向量的坐标是()A. B.C. D.12.已知,则下列说法中一定正确的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.曲线在处的切线斜率为___________.14.已知数列前项和为,且,则_______.15.若抛物线:上的一点到它的焦点的距离为3,则__.16.设,若不等式在上恒成立,则的取值范围是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,三棱锥中,,,,,,点是PA的中点,点D是AC的中点,点N在PB上,且.(1)证明:平面CMN;(2)求平面MNC与平面ABC所成角的余弦值.18.(12分)为了了解高一年级学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组的频数为12(1)第二小组的频率是多少?样本量是多少?(2)若次数在110以上(含110次)为达标,则该校全体高一年级学生的达标率是多少?(3)样本中不达标的学生人数是多少?(4)第三组的频数是多少?19.(12分)已知等比数列的公比,,.(1)求数列的通项公式;(2)令,若,求满足条件的最大整数n.20.(12分)设p:;q:关于x的方程无实根.(1)若q为真命题,求实数k的取值范围;(2)若是假命题,且是真命题,求实数k的取值范围.21.(12分)已知数列满足,(1)设,求证:数列是等比数列;(2)求数列的前项和22.(10分)已知等比数列前3项和为(1)求的通项公式;(2)若对任意恒成立,求m的取值范围

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由等差数列的性质计算得到,进而利用求和公式,变形求出答案.【详解】由题意得:,故故选:A2、C【解析】利用双曲线的定义、几何性质以及题意对选项逐个分析判断即可【详解】对于①,设内切圆与的切点分别为,则由切线长定理可得,因为,,所以,所以点的坐标为,所以点的横坐标为定值a,所以①正确,对于②,因为,所以,化简得,即,解得,因为,所以,所以②正确,对于③,设的内切圆半径为,由双曲线的定义可得,,因为,,所以,所以,所以③正确,对于④,当轴时,可得,此时,所以,所以④错误,故选:C3、A【解析】设点,利用抛物线的定义求出的值,可求得点的横坐标,即可得解.【详解】设点,易知抛物线的焦点为,由抛物线的定义可得,得,所以,点的横坐标为,故点到轴的距离为.故选:A.4、D【解析】结合导数以及函数的奇偶性判断出的单调性,由此化简不等式来求得不等式的解集.【详解】当时,单调递增,,所以单调递增.因为是偶函数,所以当时,单调递减.,,,或.即不等式的解集为.故选:D5、D【解析】由椭圆方程可直接求得.【详解】由椭圆方程知:,长轴长为.故选:D.6、D【解析】由题意可得首先求出直线上的一个向量,即可得到它的一个方向向量,再利用平面向量共线(平行)的坐标表示即可得出答案【详解】∵在直线上,∴直线的一个方向向量,又∵,∴是直线的一个方向向量故选:D7、B【解析】模拟程序运行后,可得到输出结果,利用裂项相消法即可求出答案.【详解】模拟程序运行过程如下:0),判断为否,进入循环结构,1),判断为否,进入循环结构,2),判断为否,进入循环结构,3),判断为否,进入循环结构,……9),判断为否,进入循环结构,10),判断为是,故输出,故选:B.【点睛】本题主要考查程序框图,考查裂项相消法,难度不大.一般遇见程序框图求输出结果时,常模拟程序运行以得到结论.8、B【解析】根据基本初等函数的导数和求导法则判断.【详解】,,,,只有B正确.故选:B.【点睛】本题考查基本初等函数的导数公式,考查导数的运算法则,属于基础题.9、D【解析】根据等比数列性质可知,,,成等比数列,由等比中项特点可构造方程求得,由等比数列通项公式可求得,进而得到结果.【详解】由等比数列的性质可得:,,,成等比数列,则,即,解得:,,,解得:.故选:D.10、C【解析】利用空间向量夹角的公式直接求解.【详解】,,,.由异面直线所成角的范围为,故异面直线与所成的角为.故选:C11、C【解析】根据空间向量共线的坐标表示即可得出结果.【详解】.故选:C.12、B【解析】AD选项,举出反例即可;BC选项,利用不等式的基本性质进行判断.【详解】当,时,满足,此时,故A错误;因,所以,,,B正确;因为,所以,,故,C错误;当,时,满足,,,所以,D错误.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】首先求得的导数,由导数的几何意义可得切线的斜率.【详解】因为函数的导数为,所以可得在处的切线斜率,故答案为:14、,.【解析】由的递推关系,讨论、求及,注意验证是否满足通项,即可写出的通项公式.【详解】当时,,当且时,,而,即也满足,∴,.故答案为:,.15、【解析】通过抛物线的定义列式求解【详解】根据抛物线的定义知,所以.故答案为:16、【解析】构造,利用导数求其最大值,结合已知不等式恒成立,即可确定的范围.【详解】令,则且,若得:;若得:;所以在上递增,在上递减,故,要使在上恒成立,即.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】建立如图所示空间直角坐标系,得到相关点和相关向量的坐标,(1)求出平面的法向量,利用证明即可;(2)由(1)知平面的法向量,再求平面的法向量,利用向量的夹角公式即可求解.【小问1详解】证明:三棱锥中,,,∴分别以,,,,轴建立如图所示空间直角坐标系∵,,点M是PA的中点,点D是AC的中点,点N在PB上且∴,,,,,设平面的法向量,,,,由得令得∴∵∴又平面∴平面;【小问2详解】,,∴平面∴为平面的法向量则与的夹角的补角是平面与平面所成二面角的平面角.∴平面与平面所成角的余弦值为.18、(1)0.08,150;(2)88%;(3)18;(4)51.【解析】频率分布直方图以面积的形式反映数据落在各小组内的频率大小,所以计算面积之比即为所求小组的频率.可用此方法计算(1),(2),由公式直接计算可得(1)中样本容量;根据(2)问中的达标率,可计算不达标率,从而求出不达标人数,可得(3);单独计算第三组的频率,由公式计算频数,可求出(4).【小问1详解】频率分布直方图以面积形式反映数据落在各小组内的频率大小,因此第二小组的频率为=0.08所以样本容量==150.【小问2详解】由直方图可估计该校高一年级学生的达标率为×100%=88%.【小问3详解】由(1)(2)知达标率为88%,样本量为150,不达标的学生频率为1-0.88=0.12所以样本中不达标的学生人数为150×0.12=18(人)【小问4详解】第三小组的频率为=0.34又因为样本量为150,所以第三组的频数为150×0.34=5119、(1)(2)【解析】(1)由等比数列的性质可得,结合条件求出,得出公比,从而得出通项公式.(2)由(1)可得,再求出的前项和,从而可得出答案.【小问1详解】由题意可知,有,,得或∴或又,∴∴【小问2详解】,∴∴,又单调递增,所以满足条件的的最大整数为20、(1);(2).【解析】(1)根据命题的真假,结合一元二次方程无实根,列出的不等式,即可求得结果;(2)求得命题为真对应的的范围,结合命题一个为真命题一个为假命题,即可列出的不等式组,求解即可.【小问1详解】若q为真命题,则,解得,即实数k的取值范围为.【小问2详解】若p为真,,解得,由是假命题,且是真命题,得:p、q两命题一真一假,当p真q假时,或,得,当p假q真时,,此时无解.综上的取值范围为.21、(1)证明见解析;(2).【解析】(1)将变形为,得到为等比数列,(2)由(1)得到的通项公式,用错位相减法求得【详解】(1)由,,可得,因为则,,可得是首项为,公比为的等比数列,(2)由(1),由,可得,,,上面两式相减可得:,则【点睛】数列求和的方法技巧:(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和(2)错位相减:用于等差数列与等比数列的积数列的求和(3)分组求和:用于若干个等差或等比数列和或差数列的求和(4)裂项相

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论