版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届安徽省“庐巢六校联盟”高二数学第一学期期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.对于两个平面、,“内有三个点到的距离相等”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.已知椭圆的右焦点为F,短轴的一个端点为P,直线与椭圆相交于A、B两点.若,点P到直线l的距离不小于,则椭圆C离心率的取值范围为()A. B.C. D.3.已知正数x,y满足,则取得最小值时()A. B.C.1 D.4.如图,在长方体中,,,则直线和夹角余弦值为()A. B.C. D.5.设是两个非零向量,则“”是“夹角为钝角”的A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件6.某中学举行党史学习教育知识竞赛,甲队有、、、、、共名选手其中名男生名女生,按比赛规则,比赛时现场从中随机抽出名选手答题,则至少有名女同学被选中的概率是()A. B.C. D.7.在等差数列中,,则等于A.2 B.18C.4 D.98.双曲线的焦点到渐近线的距离为()A.1 B.2C. D.9.如图,直四棱柱的底面是菱形,,,M是的中点,则异面直线与所成角的余弦值为()A. B.C. D.10.中,,,分别为三个内角,,的对边,若,,,则()A. B.C. D.11.“且”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.经过点作圆的弦,使点为弦的中点,则弦所在直线的方程为A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在空间直角坐标系中,若三点、、满足,则实数的值为__________.14.用一个平面去截半径为5cm的球,截面面积是则球心到截面的距离为_______15.无穷数列满足:只要必有则称为“和谐递进数列”.已知为“和谐递进数列”,且前四项成等比数列,,则=_________.16.甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现同时从甲、乙两口袋中各任取一个球交换放入对方口袋,共进行了2次这样的操作后,甲口袋中恰有2个黑球的概率为__________________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)城南公园种植了4棵棕榈树,各棵棕榈树成活与否是相互独立的,成活率为p,设为成活棕榈树的株数,数学期望.(1)求p的值并写出的分布列;(2)若有2棵或2棵以上的棕榈树未成活,则需要补种,求需要补种棕榈树的概率.18.(12分)已知数列是递增的等差数列,,若成等比数列.(1)求数列的通项公式;(2)若,数列的前项和,求.19.(12分)在中,角、、所对的边分别为、、,且(1)求证;、、成等差数列;(2)若,的面积为,求的周长20.(12分)如图,在长方体中,底面是正方形,O是的中点,(1)证明:(2)求直线与平面所成角的正弦值21.(12分)在中,角A,B,C的对边分别为a,b,c,且求A和B的大小;若M,N是边AB上的点,,求的面积的最小值22.(10分)在平面直角坐标系中,为坐标原点,曲线上点都在轴及其右侧,且曲线上的任一点到轴的距离比它到圆的圆心的距离小1(1)求曲线的方程;(2)已知过点的直线交曲线于点,若,求面积
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据平面的性质分别判断充分性和必要性.【详解】充分性:若内有三个点到的距离相等,当这三个点不在一条直线上时,可得;当这三个点在一条直线上时,则、平行或相交,故充分性不成立;必要性:若,则内每个点到的距离相等,故必要性成立,所以“内有三个点到的距离相等”是“”的必要不充分条件.故选:B.2、D【解析】设椭圆的左焦点为,由题可得,由点P到直线l的距离不小于可得,进而可求的范围,即可得出离心率范围.【详解】设椭圆的左焦点为,P为短轴的上端点,连接,如图所示:由椭圆的对称性可知,A,B关于原点对称,则,又,∴四边形为平行四边形,∴,又,解得:,点P到直线l距离:,解得:,即,∴,∴.故选:D.【点睛】关键点睛:本题考查椭圆离心率的求解,解题的关键是由椭圆定义得出,再根据已知条件得出.3、B【解析】根据基本不等式进行求解即可.【详解】因为正数x,y,所以,当且仅当时取等号,即时,取等号,而,所以解得,故选:B4、D【解析】如图建立空间直角坐标系,分别求出的坐标,由空间向量夹角公式即可求解.【详解】如图:以为原点,分别以,,所在的直线为,,轴建立空间直角坐标系,则,,,,所以,,所以,所以直线和夹角的余弦值为,故选:D.5、B【解析】因为时,夹角为钝角或平角;而当夹角为钝角时,成立,所以“”是“夹角为钝角”的必要不充分条件.故选B考点:1向量的数量积;2充分必要条件6、D【解析】现场选名选手,共种情况,设,,,四位同学为男同学则没有女同学被选中的情况,共有6种,利用对立事件进行求解,即可得到答案;【详解】现场选名选手,基本事件有:,,,,,,,,,,,,,,共种情况,不妨设,,,四位同学为男同学则没有女同学被选中的情况是:,,,,,共种,则至少有一名女同学被选中的概率为.故选:.7、D【解析】利用等差数列性质得到,,计算得到答案.详解】等差数列中,故选D【点睛】本题考查了等差数列的计算,利用性质可以简化运算,是解题的关键.8、A【解析】分别求出双曲线的焦点坐标和渐近线方程,利用点到直线的距离公式求出结果【详解】双曲线中,焦点坐标为渐近线方程为:∴双曲线的焦点到渐近线的距离故选:A9、D【解析】用向量分别表示,利用向量的夹角公式即可求解.【详解】由题意可得,故选:D【点睛】本题主要考查用向量的夹角公式求异面直线所成的角,属于基础题.10、C【解析】利用正弦定理求解即可.【详解】,,,由正弦定理可得,解得,故选:C.11、A【解析】按照充分必要条件的判断方法判断,“且”能否推出“”,以及“”能否推出“且”,判断得到正确答案,【详解】当且时,成立,反过来,当时,例:,不能推出且.所以“且”是“”的充分不必要条件.故选:A【点睛】本题考查充分不必要条件的判断,重点考查基本判断方法,属于基础题型.12、A【解析】由题知为弦AB的中点,可得直线与过圆心和点的直线垂直,可求的斜率,然后用点斜式求出的方程【详解】由题意知圆的圆心为,,由,得,∴弦所在直线的方程为,整理得.选A.【点睛】本题考查直线与圆的位置关系,直线的斜率,直线的点斜式方程,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】分析可知,结合空间向量数量积的坐标运算可求得结果.【详解】由已知可得,,因为,则,即,解得.故答案为:.14、4cm【解析】根据圆面积公式算出截面圆的半径,利用球的截面圆性质与勾股定理算出球心到截面的距离【详解】解:设截面圆的半径为r,截面的面积是,,可得又球的半径为5cm,根据球的截面圆性质,可得截面到球心的距离为故答案为:4cm【点睛】本题主要考查了球的截面圆性质、勾股定理等知识,考查了空间想象能力,属于基础题15、7578【解析】根据新定义得数列是周期数列,从而易求得【详解】∵成等比数列,,∴,又,为“和谐递进数列”,∴,,,,…,∴数列是周期数列,周期为4∴故答案为:757816、【解析】分两类:两次都互相交换白球的概率和第一次甲交出黑球收到白球,且第二次甲交出白球收到黑球的概率求和可得答案.【详解】分两类:①两次都互相交换白球的概率为;②第一次甲交出黑球收到白球,且第二次甲交出白球收到黑球的概率为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),分布列见解析;(2).【解析】(1)根据二项分布知识即可求解;(2)将补种棕榈树的概率转化为成活的概率,结合概率加法公式即可求解.【小问1详解】由题意知,,又,所以,故未成活率为,由于所有可能的取值为0,1,2,3,4,所以,,,,,则的分布列为01234【小问2详解】记“需要补种棕榈树”为事件A,由(1)得,,所以需要补种棕榈树的概率为.18、(1);(2).【解析】(1)设等差数列的公差为,根据题意列出方程组,求得的值,即可求解;(2)由(1)求得,结合“裂项法”即可求解.【详解】(1)设等差数列的公差为,因为,若成等比数列,可得,解得,所以数列的通项公式为.(2)由(1)可得,所以.【点睛】关于数列的裂项法求和的基本策略:1、基本步骤:裂项:观察数列的通项,将通项拆成两项之差的形式;累加:将数列裂项后的各项相加;消项:将中间可以消去的项相互抵消,将剩余的有限项相加,得到数列的前项和.2、消项的规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项.19、(1)证明见解析(2)【解析】(1)利用正弦定理结合两角和的正弦公式求出的值,结合角的取值范围可求得角的值,可求得的值,即可证得结论成立;(2)利用三角形的面积公式可求得的值,结合余弦定理可求得的值,进而可求得的周长.【小问1详解】证明:由正弦定理及,得,所以,,所以,,,则,所以,,又,,,因此,、、成等差数列.【小问2详解】解:,,又,,故的周长为.20、(1)证明见解析(2)【解析】(1)以A为坐标原点,的方向分别为x,y,z轴的正方向,建立空间直角坐标系,令,可得的坐标,再求数量积可得答案;(2)求出平面的法向量、的坐标,由线面角的向量求法可得答案.【小问1详解】在长方体中,以A为坐标原点,的方向分别为x,y,z轴的正方向,建立如图所示的空间直角坐标系不妨令,则,,因为,所以【小问2详解】由(1)可知,,,设平面的法向量,则令,得,设直线与平面所成的角,则.21、(1),(2)【解析】利用正余弦定理化简即求解A和B的大小利用正弦定理把CN、CM表示出来,结合三角函数的性质,即可求解的面积的最小值【详解】解:,由正弦定理得:,,,可得,即;,由由余弦定理可得:,,如图所示:设,,在中由正弦定理,得,由可知,,所以:,同理,由于,故,此时故的面积的最小值为【点睛】本题考查了正余弦定理的应用,三角函数的有界限求解最值范围,考查了推理能力与计算能力,属于中档题22、(1)(2)【解析】(1)由题意直接列或根据抛物线的定义求轨迹方程(2)待定系数法设直线方程,联立直线与抛物线方程,根据抛物线的定义,利用韦达定理解出直线方程,再求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025青海海北州第二人民医院面向社会招聘不占编制事业单位工作人员5人模拟笔试试题及答案解析
- 2025年合肥肥西县上派镇丽景小学招聘见习教师考试核心题库及答案解析
- 2025河北雄安人才服务有限公司招聘医疗类岗位若干人笔试重点题库及答案解析
- 2026国航股份西南分公司乘务员岗位高校毕业生校园招聘考试重点题库及答案解析
- 2025年食品级塑料薄膜安全标准报告
- 吉安市文化传媒集团有限责任公司2025年公开招聘劳务派遣工作人员参考考试试题及答案解析
- 2025海南琼海市总工会招聘工会社会工作者9人(第1号)考试核心题库及答案解析
- 2025广西壮族自治区文化和旅游厅幼儿园保育员招聘1人备考核心题库及答案解析
- 晋江市中医院医共体2025年招聘编外人员备考题库完整参考答案详解
- 2025年吉林大学材料科学与工程学院人才派遣(Ⅱ类)人员招聘备考题库含答案详解
- 神经内科三基考试题库及答案
- 承揽外墙维修协议书
- 医疗器械质量管理制度培训试题(含答案)
- Unit6Findyourway第4课时(Wrapup)(教案)-外研版英语四年级上册
- 贸易公司产品介绍
- 开远市海绵城市智慧监测系统施工方案
- 2025年低空经济产业安全管理人员技能要求报告
- 花花牛乳业集团品牌营销策略研究
- 2025年河北省高职单招考试八类专业基础测试(历史)
- 2026年郑州职业技术学院单招职业适应性测试题库必考题
- 国家开放大学《管理英语1》考试题及答案
评论
0/150
提交评论