版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省蓬莱第二中学2026届高二数学第一学期期末教学质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知空间四边形中,,,,点在上,且,为中点,则等于()A. B.C. D.2.若椭圆上一点到C的两个焦点的距离之和为,则()A.1 B.3C.6 D.1或33.在等比数列{}中,,,则=()A.9 B.12C.±9 D.±124.设直线与双曲线(,)的两条渐近线分别交于,两点,若点满足,则该双曲线的离心率是()A. B.C. D.5.某公司门前有一排9个车位的停车场,从左往右数第三个,第七个车位分别停着A车和B车,同时进来C,D两车.在C,D不相邻的情况下,C和D至少有一辆与A和B车相邻的概率是()A. B.C. D.6.【2018江西抚州市高三八校联考】已知双曲线(,)与抛物线有相同的焦点,且双曲线的一条渐近线与抛物线的准线交于点,则双曲线的离心率为()A. B.C. D.7.已知随机变量服从正态分布,且,则()A.0.1 B.0.2C.0.3 D.0.48.若x,y满足约束条件,则的最大值为()A.2 B.3C.4 D.59.直线过点且与双曲线仅有一个公共点,则这样的直线有()A.1条 B.2条C.3条 D.4条10.第24届冬季奥林匹克运动会,将于2022年2月4日在北京市和张家口市联合举行.北京将成为奥运史上第一个举办过夏季奥林匹克运动会和冬季奥林匹克运动会的城市.根据安排,国家体育场(鸟巢)成为北京冬奥会开、闭幕式的场馆.国家体育场“鸟巢”的钢结构鸟瞰图如图所示,内外两圈的钢骨架是两个“相似椭圆”(离心率相同的两个椭圆我们称为“相似椭圆”).如图,由外层椭圆长轴一端点A和短轴一端点B分别向内层椭圆引切线AC,BD,若两切线斜率之积等于,则椭圆的离心率为()A. B.C. D.11.若不等式在上有解,则的最小值是()A.0 B.-2C. D.12.已知两条异面直线的方向向量分别是,,则这两条异面直线所成的角满足()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若,且数列是严格递增数列或严格递减数列,则实数a取值范围是______14.已知圆锥底面半径为1,高为,则该圆锥的侧面积为_____15.如图,四棱锥的底面是正方形,底面,为的中点,若,则点到平面的距离为___________.16.已知曲线的方程是,给出下列四个结论:①曲线C恰好经过4个整点(即横、纵坐标均为整数的点);②曲线有4条对称轴;③曲线上任意一点到原点的距离都不小于1;④曲线所围成图形的面积大于4;其中,所有正确结论的序号是_____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)有时候一些东西吃起来口味越好,对我们的身体越有害.下表给出了不同品牌的一些食品所含热量的百分比记为和一些美食家以百分制给出的对此种食品口味的评价分数记为:食品品牌12345678910所含热量的百分比25342019262019241914百分制口味评价分数88898078757165626052参考数据:,,,参考公式:,(1)已知这些品牌食品的所含热量的百分比与美食家以百分制给出的对此种食品口味的评价分数具有相关关系.试求出回归方程(最后结果精确到);(2)某人只能接受食品所含热量百分比为及以下的食品.现在他想从这些食品中随机选取两种购买,求他所选取的两种食品至少有一种是美食家以百分制给出的对此种食品口味的评价分数为分以上的概率.18.(12分)已知椭圆,点在上,,且(1)求出直线所过定点的坐标;(不需要证明)(2)过A点作的垂线,垂足为,是否存在点,使得为定值?若存在,求出的值;若不存在,说明理由.19.(12分)已知函数f(x)=x3﹣3ax2+2bx在x=处有极大值.(1)求a、b的值;(2)求f(x)在[0,2]上的值域.20.(12分)在平面直角坐标系中,动点到直线的距离与到点的距离之差为.(1)求动点的轨迹的方程;(2)过点的直线与交于、两点,若的面积为,求直线的方程.21.(12分)如图是一个正三棱柱(以为底面)被一平面所截得到的几何体,截面为ABC.已知,,M为AB中点.(1)证明:平面;(2)求此几何体的体积.22.(10分)已知函数(…是自然对数的底数).(1)求的单调区间;(2)求函数的零点的个数.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用空间向量运算求得正确答案.【详解】.故选:B2、B【解析】讨论焦点的位置利用椭圆定义可得答案.【详解】若,则由得(舍去);若,则由得故选:B.3、D【解析】根据题意,设等比数列的公比为,由等比数列的性质求出,再求出【详解】根据题意,设等比数列的公比为,若,,则,变形可得,则,故选:4、C【解析】先求出,的坐标,再求中点坐标,利用点满足,可得,从而求双曲线的离心率.【详解】解:由双曲线方程可知,渐近线为,分别于联立,解得:,,所以中点坐标为,因为点满足,所以,所以,即,所以.故选:C.【点睛】本题考查双曲线的离心率,考查直线与双曲线的位置关系,考查学生的计算能力,属于中档题.5、B【解析】先求出基本事件总数,和至少有一辆与和车相邻的对立事件是和都不与和车相邻,由此能求出和至少有一辆与和车相邻的概率【详解】解:某公司门前有一排9个车位的停车场,从左往右数第三个,第七个车位分别停着车和车,同时进来,两车,在,不相邻的条件下,基本事件总数,和至少有一辆与和车相邻的对立事件是和都不与和车相邻,和至少有一辆与和车相邻的概率:故选:B6、C【解析】由题意可知,抛物线的焦点坐标为,准线方程为,由在抛物线的准线上,则,则,则焦点坐标为,所以,则,解得,双曲线的渐近线方程是,将代入渐近线的方程,即,则双曲线的离心率为,故选C.7、A【解析】利用正态分布的对称性和概率的性质即可【详解】由,且则有:根据正态分布的对称性可知:故选:A8、C【解析】画出约束条件的可行域,利用目标函数的几何意义即可求解【详解】作出可行域如图所示,把目标函数转化为,平移,经过点时,纵截距最大,所以的最大值为4.故选:C9、C【解析】根据直线的斜率存在与不存在,分类讨论,结合双曲线的渐近线的性质,即可求解.【详解】当直线的斜率不存在时,直线过双曲线的右顶点,方程为,满足题意;当直线的斜率存在时,若直线与两渐近线平行,也能满足与双曲线有且仅有一个公共点.综上可得,满足条件的直线共有3条.故选:C.【点睛】本题主要考查了直线与双曲线的位置关系,以及双曲线的渐近线的性质,其中解答中忽视斜率不存在的情况是解答的一个易错点,着重考查了分析问题和解答问题的能力,以及分类讨论思想的应用,属于基础题.10、C【解析】设内层椭圆的方程为,可得外层椭圆的方程为,设切线的方程为,联立方程组,根据,得到,同理得到,结合题意求得,进而求得离心率.【详解】设内层椭圆方程为,因为内外层的椭圆的离心率相同,可设外层椭圆的方程为,设切线的方程为,联立方程组,整理得,由,整理得,设切线的方程为,同理可得,因为两切线斜率之积等于,可得,可得,所以离心率为.故选:C.11、D【解析】将题设条件转化为在上有解,然后求出的最大值即可得解.【详解】不等式在上有解,即为在上有解,设,则在上单调递减,所以,所以,即,故选:D.【点睛】本题主要考查二次不等式能成立问题,可以选择分离参数转化为最值问题,也可以进行分情况讨论.12、D【解析】利用向量夹角余弦公式直接求解【详解】解:两条异面直线的方向向量分别是,,这两条异面直线所成的角满足:,,故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据数列递增和递减的定义求出实数a的取值范围.【详解】因为数列是严格递增数列或严格递减数列,所以.若数列是严格递增数列,则,即,即恒成立,故;若数列是严格递减数列,则,即,即恒成立,由,故;综上,实数a的取值范围是故答案为:14、【解析】由已知求得母线长,代入圆锥侧面积公式求解【详解】由已知可得r=1,h=,则圆锥的母线长l=,∴圆锥的侧面积S=πrl=2π故答案为2π【点睛】本题考查圆锥侧面积的求法,侧面积公式S=πrl.15、【解析】以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法可求得点到平面的距离.【详解】因为底面,,以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,则、、、,设平面的法向量为,,,则,取,可得,,所以,点到平面的距离为.故答案为:.16、②③④【解析】根据曲线方程作出曲线,即可根据题意判断各结论的真假【详解】曲线的简图如下:根据图象以及方程可知,曲线C恰好经过9个整点,它们是,,,所以①不正确;由图可知,曲线有4条对称轴,它们分别是轴,轴,直线和,②正确;由图可知,曲线上任意一点到原点的距离都不小于1,③正确;由图可知,曲线所围成图形的面积等于,④正确故答案为:②③④三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)首先求出、、,即可求出,从而求出回归直线方程;(2)由表可知某人只能接受的食品共有种,评价为分以上的有种可记为,,另外种记为,,,,用列举法列出所有的可能结果,再根据古典概型的概率公式计算可得;【小问1详解】解:设所求的回归方程为,由,,,,所求的回归方程为:.【小问2详解】解:由表可知某人只能接受的食品共有种,其中美食家以百分制给出的对此种食品口味的评价为分以上的有种可记为,,另外种记为,,,.任选两种分别为:,,,,,,,,,,,,,,,共15个基本事件.记“所选取的两种食品至少有一种是美食家以百分制给出的对此食品口味的评价分数为分以上”为事件,则事件包含,,,,,,,,共个基本事件,故事件发生的概率为.18、(1)(2)存在,【解析】(1)分斜率存在和斜率不存在两种情况,当斜率存在时,设出直线方程,联立椭圆方程,利用韦达定理列出方程,求出定点坐标,当斜率不存在时,设出点的坐标进行求解;(2)结合第一问的定点坐标,结合直角三角形斜边中线得到存在点,使得为定值,求出结果.【小问1详解】设点,若直线斜率存在时,设直线的方程为:,代入椭圆方程消去并整理得:,可得,因为,所以,即,根据,代入整理可得:,所以,整理化简得:,因为不在直线上,所以,故,于是的方程为,所以直线过定点直线过定点.当直线的斜率不存在时,可得,由得:,得,结合可得:,解得:或(舍).此时直线过点【小问2详解】由(1)可知因为,取中点,则此时,【点睛】直线过定点问题,一般处理思路是分斜率存在和斜率不存在两种情况,特别是斜率存在时,设出直线为,联立后用韦达定理得到两根之和与两根之积,结合题干条件得到等量关系,求出的关系,进而得到定点坐标.19、(1)(2)【解析】(1)由于在点处有极小值,所以,从而可求出、的值;(2)由(1)可得,得在区间上单调递减,在区间上单调递增,从而可求出其值域.【小问1详解】因为函数在处有极大值,所以,①且②联立①②得:;【小问2详解】由(1)得,所以,由得;由得,所以,函数区间上单调递减,在区间上单调递增;又,所以在上的值域为.20、(1);(2)或.【解析】(1)本题首先可以设动点,然后根据题意得出,通过化简即可得出结果;(2)本题首先可排除直线斜率不存在时情况,然后设直线方程为,通过联立方程并化简得出,则,,再然后根据得出,最后根据的面积为即可得出结果.【详解】(1)设动点,因为动点到直线的距离与到点的距离之差为,所以,化简可得,故轨迹方程为.(2)当直线斜率不存在时,其方程为,此时,与只有一个交点,不符合题意,当直线斜率存在时,设其方程为,联立方程,化简得,,令、,则,,因为,所以,因为的面积为,所以,解得或,故直线方程为:或.【点睛】本题考查动点的轨迹方程的求法以及抛物线与直线相交的相关问题的求解,能否根据题意列出等式是求动点的轨迹方程的关键,考查韦达定理的应用,在计算时要注意斜率为这种情况,考查计算能力,考查转化与化归思想,是中档题.21、(1)证明见解析(2)【解析】(1)取的中点,连接,,可得四边形为平行四边形,从而可得,然后证明平面,从而可证明.(2)过作截面平面,分别交,于,,连接,作于,由所求几何体体积为从而可得答案.【小问1详解】如图,取的中点,连接,,因为,分别是,的中点.所以且又因为,,所以且,故四边形为平行四边形,所以.因为正三角形,是的中点,所以,又因为平面,所以,又,所以平面又,所以平面.【小问2详解】如图,过作截面平面,分别交,于,,连接,作于,因为平面平面,所以,结合直三棱柱的性质,则平面因为,,,所以.所以所求几何体体积为22、(1)当时,的单调递增区间为,无单调递减区间;当时,的单调递减区间为,单调递增区间为;(2)时函数没有零点;或时函数有且只有一个零点;时,函数有两个零点.【解析】(1)先对函数求导,然后分和两种情况判断导函数正负,求其单调区间;(2)由,得,构造函数,然后利用导数求出其单调区间和极值,画出此函数的图像,再判断图像与直线的交点情况,从而可得答案【详解】(1)因为,所以,当时,恒成立,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年西藏革吉县财政局招聘财会监督人员的备考题库及答案详解一套
- 2025年中国社会科学院公开招聘第一批专业技术人员169人备考题库及参考答案详解1套
- 2025年福清市人民法院关于公开招聘劳务派遣人员的备考题库及答案详解一套
- 2025年北京协和医院变态(过敏)反应科合同制科研助理招聘备考题库有答案详解
- 2024年河南安阳公安机关留置看护辅警招聘考试真题
- 鞍山台安县新公益性岗位招聘考试真题2024
- 2025河北秦皇岛市社会保险事业服务中心选调6人备考核心题库及答案解析
- 2025年12月杭州市公安局滨江区分局招聘警务辅助人员20人笔试重点题库及答案解析
- 2025年山西省脑瘫康复医院公开招聘编制外合同制工作人员备考题库及参考答案详解1套
- 2025中国有色金属工业昆明勘察设计研究院有限公司面向社会招聘5人考试重点试题及答案解析
- 中国葡萄膜炎临床诊断要点专家共识2025
- 受益所有人识别与风险管理培训
- 2025年国家开放大学(电大)《护理伦理学》期末考试复习题库及答案解析
- 幼儿园每日消毒及安全管理操作规范
- 11.1党和人民信赖的英雄军队课件-2025-2026学年统编版道德与法治八年级上册
- 2025年军队文职保管员题库及答案(可下载)
- 企业劳动用工风险防范操作指南
- DB37-T 5337-2025 建筑隔震减震装置检测技术规程
- 立德树人教育教学课件
- 餐饮宴会服务标准流程全流程管理方案
- 甲方安全技术交底
评论
0/150
提交评论