版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省廉江中学2026届高三上数学期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,,,,则边上的高为()A. B.2 C. D.2.设不等式组,表示的平面区域为,在区域内任取一点,则点的坐标满足不等式的概率为A. B.C. D.3.已知函数,将的图象上的所有点的横坐标缩短到原来的,纵坐标保持不变;再把所得图象向上平移个单位长度,得到函数的图象,若,则的值可能为()A. B. C. D.4.已知实数x,y满足,则的最小值等于()A. B. C. D.5.设为等差数列的前项和,若,则A. B.C. D.6.函数(其中是自然对数的底数)的大致图像为()A. B. C. D.7.的展开式中的系数为()A. B. C. D.8.一个算法的程序框图如图所示,若该程序输出的结果是,则判断框中应填入的条件是()A. B. C. D.9.《九章算术》“少广”算法中有这样一个数的序列:列出“全步”(整数部分)及诸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去约其分子,将所得能通分之分数进行通分约简,又用最下面的分母去遍乘诸(未通者)分子和以通之数,逐个照此同样方法,直至全部为整数,例如:及时,如图:记为每个序列中最后一列数之和,则为()A.147 B.294 C.882 D.176410.将函数的图象分别向右平移个单位长度与向左平移(>0)个单位长度,若所得到的两个图象重合,则的最小值为()A. B. C. D.11.在正方体中,点,,分别为棱,,的中点,给出下列命题:①;②;③平面;④和成角为.正确命题的个数是()A.0 B.1 C.2 D.312.已知函数在区间有三个零点,,,且,若,则的最小正周期为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马.现从双方的马匹中随机选一匹进行一场比赛,则田忌的马获胜的概率为__________.14.如图所示,在直角梯形中,,、分别是、上的点,,且(如图①).将四边形沿折起,连接、、(如图②).在折起的过程中,则下列表述:①平面;②四点、、、可能共面;③若,则平面平面;④平面与平面可能垂直.其中正确的是__________.15.设双曲线的一条渐近线方程为,则该双曲线的离心率为____________.16.在中,角所对的边分别为,为的面积,若,,则的形状为__________,的大小为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,点分别为椭圆的左、右顶点,直线交于另一点为等腰直角三角形,且.(Ⅰ)求椭圆的方程;(Ⅱ)设过点的直线与椭圆交于两点,总使得为锐角,求直线斜率的取值范围.18.(12分)如图,在四棱锥中,侧面为等边三角形,且垂直于底面,,分别是的中点.(1)证明:平面平面;(2)已知点在棱上且,求直线与平面所成角的余弦值.19.(12分)已知函数,其中为实常数.(1)若存在,使得在区间内单调递减,求的取值范围;(2)当时,设直线与函数的图象相交于不同的两点,,证明:.20.(12分)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的参数方程是(为参数,常数),曲线的极坐标方程是.(1)写出的普通方程及的直角坐标方程,并指出是什么曲线;(2)若直线与曲线,均相切且相切于同一点,求直线的极坐标方程.21.(12分)已知.(1)若是上的增函数,求的取值范围;(2)若函数有两个极值点,判断函数零点的个数.22.(10分)在直角坐标系中,直线的参数方程为.(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的普通方程及的直角坐标方程;(2)求曲线上的点到距离的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
结合正弦定理、三角形的内角和定理、两角和的正弦公式,求得边长,由此求得边上的高.【详解】过作,交的延长线于.由于,所以为钝角,且,所以.在三角形中,由正弦定理得,即,所以.在中有,即边上的高为.故选:C【点睛】本小题主要考查正弦定理解三角形,考查三角形的内角和定理、两角和的正弦公式,属于中档题.2、A【解析】
画出不等式组表示的区域,求出其面积,再得到在区域内的面积,根据几何概型的公式,得到答案.【详解】画出所表示的区域,易知,所以的面积为,满足不等式的点,在区域内是一个以原点为圆心,为半径的圆面,其面积为,由几何概型的公式可得其概率为,故选A项.【点睛】本题考查由约束条件画可行域,求几何概型,属于简单题.3、C【解析】
利用二倍角公式与辅助角公式将函数的解析式化简,然后利用图象变换规律得出函数的解析式为,可得函数的值域为,结合条件,可得出、均为函数的最大值,于是得出为函数最小正周期的整数倍,由此可得出正确选项.【详解】函数,将函数的图象上的所有点的横坐标缩短到原来的倍,得的图象;再把所得图象向上平移个单位,得函数的图象,易知函数的值域为.若,则且,均为函数的最大值,由,解得;其中、是三角函数最高点的横坐标,的值为函数的最小正周期的整数倍,且.故选C.【点睛】本题考查三角函数图象变换,同时也考查了正弦型函数与周期相关的问题,解题的关键在于确定、均为函数的最大值,考查分析问题和解决问题的能力,属于中等题.4、D【解析】
设,,去绝对值,根据余弦函数的性质即可求出.【详解】因为实数,满足,设,,,恒成立,,故则的最小值等于.故选:.【点睛】本题考查了椭圆的参数方程、三角函数的图象和性质,考查了运算能力和转化能力,意在考查学生对这些知识的理解掌握水平.5、C【解析】
根据等差数列的性质可得,即,所以,故选C.6、D【解析】由题意得,函数点定义域为且,所以定义域关于原点对称,且,所以函数为奇函数,图象关于原点对称,故选D.7、C【解析】由题意,根据二项式定理展开式的通项公式,得展开式的通项为,则展开式的通项为,由,得,所以所求的系数为.故选C.点睛:此题主要考查二项式定理的通项公式的应用,以及组合数、整数幂的运算等有关方面的知识与技能,属于中低档题,也是常考知识点.在二项式定理的应用中,注意区分二项式系数与系数,先求出通项公式,再根据所求问题,通过确定未知的次数,求出,将的值代入通项公式进行计算,从而问题可得解.8、D【解析】
首先判断循环结构类型,得到判断框内的语句性质,然后对循环体进行分析,找出循环规律,判断输出结果与循环次数以及的关系,最终得出选项.【详解】经判断此循环为“直到型”结构,判断框为跳出循环的语句,第一次循环:;第二次循环:;第三次循环:,此时退出循环,根据判断框内为跳出循环的语句,,故选D.【点睛】题主要考查程序框图的循环结构流程图,属于中档题.解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件分支结构还是循环结构;(3)注意区分当型循环结构和直到型循环结构;(4)处理循环结构的问题时一定要正确控制循环次数;(5)要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.9、A【解析】
根据题目所给的步骤进行计算,由此求得的值.【详解】依题意列表如下:上列乘上列乘上列乘630603153021020156121510所以.故选:A【点睛】本小题主要考查合情推理,考查中国古代数学文化,属于基础题.10、B【解析】
首先根据函数的图象分别向左与向右平移m,n个单位长度后,所得的两个图像重合,那么,利用的最小正周期为,从而求得结果.【详解】的最小正周期为,那么(∈),于是,于是当时,最小值为,故选B.【点睛】该题考查的是有关三角函数的周期与函数图象平移之间的关系,属于简单题目.11、C【解析】
建立空间直角坐标系,利用向量的方法对四个命题逐一分析,由此得出正确命题的个数.【详解】设正方体边长为,建立空间直角坐标系如下图所示,,.①,,所以,故①正确.②,,不存在实数使,故不成立,故②错误.③,,,故平面不成立,故③错误.④,,设和成角为,则,由于,所以,故④正确.综上所述,正确的命题有个.故选:C【点睛】本小题主要考查空间线线、线面位置关系的向量判断方法,考查运算求解能力,属于中档题.12、C【解析】
根据题意,知当时,,由对称轴的性质可知和,即可求出,即可求出的最小正周期.【详解】解:由于在区间有三个零点,,,当时,,∴由对称轴可知,满足,即.同理,满足,即,∴,,所以最小正周期为:.故选:C.【点睛】本题考查正弦型函数的最小正周期,涉及函数的对称性的应用,考查计算能力.二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】分析:由题意结合古典概型计算公式即可求得题中的概率值.详解:由题意可知了,比赛可能的方法有种,其中田忌可获胜的比赛方法有三种:田忌的中等马对齐王的下等马,田忌的上等马对齐王的下等马,田忌的上等马对齐王的中等马,结合古典概型公式可得,田忌的马获胜的概率为.点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.14、①③【解析】
连接、交于点,取的中点,证明四边形为平行四边形,可判断命题①的正误;利用线面平行的性质定理和空间平行线的传递性可判断命题②的正误;连接,证明出,结合线面垂直和面面垂直的判定定理可判断命题③的正误;假设平面与平面垂直,利用面面垂直的性质定理可判断命题④的正误.综合可得出结论.【详解】对于命题①,连接、交于点,取的中点、,连接、,如下图所示:则且,四边形是矩形,且,为的中点,为的中点,且,且,四边形为平行四边形,,即,平面,平面,平面,命题①正确;对于命题②,,平面,平面,平面,若四点、、、共面,则这四点可确定平面,则,平面平面,由线面平行的性质定理可得,则,但四边形为梯形且、为两腰,与相交,矛盾.所以,命题②错误;对于命题③,连接、,设,则,在中,,,则为等腰直角三角形,且,,,且,由余弦定理得,,,又,,平面,平面,,,、为平面内的两条相交直线,所以,平面,平面,平面平面,命题③正确;对于命题④,假设平面与平面垂直,过点在平面内作,平面平面,平面平面,,平面,平面,平面,,,,,,,又,平面,平面,.,平面,平面,.,,显然与不垂直,命题④错误.故答案为:①③.【点睛】本题考查立体几何综合问题,涉及线面平行、面面垂直的证明、以及点共面的判断,考查推理能力,属于中等题.15、【解析】
根据渐近线得到,,计算得到离心率.【详解】,一条渐近线方程为:,故,,.故答案为:.【点睛】本题考查了双曲线的渐近线和离心率,意在考查学生的计算能力.16、等腰三角形【解析】∵∴根据正弦定理可得,即∴∴∴的形状为等腰三角形∵∴∴由余弦定理可得∴,即∵∴故答案为等腰三角形,三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)由题意可知:由,求得点坐标,即可求得椭圆的方程;(Ⅱ)设直线,代入椭圆方程,由韦达定理,由,由为锐角,则,由向量数量积的坐标公式,即可求得直线斜率的取值范围.【详解】解:(Ⅰ)根据题意是等腰直角三角形,,设由得则代入椭圆方程得椭圆的方程为(Ⅱ)根据题意,直线的斜率存在,可设方程为设由得由直线与椭圆有两个不同的交点则即得又为锐角则即②由①②得或故直线斜率可取值范围是【点睛】本题考查椭圆的标准方程及简单几何性质,考查直线与椭圆的位置关系,考查向量数量积的坐标运算,韦达定理,考查计算能力,属于中档题.18、(1)证明见解析;(2).【解析】
(1)由平面几何知识可得出四边形是平行四边形,可得面,再由面面平行的判定可证得面面平行;(2)由(1)可知,两两垂直,故建立空间直角坐标系,可求得面PAB的法向量,再运用线面角的向量求法,可求得直线与平面所成角的余弦值.【详解】(1),,又,,,而、分别是、的中点,,故面,又且,故四边形是平行四边形,面,又,是面内的两条相交直线,故面面.(2)由(1)可知,两两垂直,故建系如图所示,则,,,,设是平面PAB的法向量,,令,则,,直线NE与平面所成角的余弦值为.【点睛】本题考查空间的面面平行的判定,以及线面角的空间向量的求解方法,属于中档题.19、(1);(2)见解析.【解析】
(1)将所求问题转化为在上有解,进一步转化为函数最值问题;(2)将所证不等式转化为,进一步转化为,然后再通过构造加以证明即可.【详解】(1),根据题意,在内存在单调减区间,则不等式在上有解,由得,设,则,当且仅当时,等号成立,所以当时,,所以存在,使得成立,所以的取值范围为。(2)当时,,则,从而所证不等式转化为,不妨设,则不等式转化为,即,即,令,则不等式转化为,因为,则,从而不等式化为,设,则,所以在上单调递增,所以即不等式成立,故原不等式成立.【点睛】本题考查了利用导数研究函数单调性、利用导数证明不等式,这里要强调一点,在证明不等式时,通常是构造函数,将问题转化为函数的极值或最值来处理,本题是一道有高度的压轴解答题.20、(1),,表示以为圆心为半径的圆;为抛物线;(2)【解析】
(1)消去参数的直角坐标方程,利用,即得的直角坐标方程;(2)由直线与抛物线相切,求导可得切线斜率,再由直线与圆相切,故切线与圆心与切点连线垂直,可求解得到切点坐标,即得解.【详解】(1)消去参数的直角坐标方程为:.的极坐标方程.∵,.当时表示以为圆心为半径的圆;为抛物线.(2)设切点为,由于,则切线斜率为,由于直线与圆相切,故切线与圆心与切点连线垂直,故有,直线的直角坐标方程为,所以的极坐标方程为.【点睛】本题考查了极坐标,参数方程综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.21、(1)(2)三个零点【解析】
(1)由题意知恒成立,构造函数,对函数求导,求得函数最值,进而得到结果;(2)当时先对函数求导研究函数的单调性可得到函数有两个极值点,再证,.【详解】(1)由得,由题意知恒成立,即,设,,时,递减,时,,递增;故,即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年永康市科学技术局工作人员招聘备考题库完整参考答案详解
- 上高县公安局2025年治安巡防队员招聘备考题库及答案详解1套
- 2026年医疗殡葬审批合同
- 2026年船舶评估合同
- 2025年柳城县应急管理局招聘5人备考题库及参考答案详解1套
- 2025年医保年终工作总结范例(2篇)
- 2025年专升本针灸考试题附答案
- 2025年甘肃电器科学研究院聘用人员招聘备考题库及参考答案详解
- 2025年兴业银行拉萨分行社会招聘备考题库及1套完整答案详解
- 2025国家公务员国家税务总局襄阳市襄城区税务局面试题及答案
- 职业病防治案例警示与源头管控
- 医院扩容提升改造建设项目可行性研究报告
- 统编版三年级上册道德与法治知识点及2025秋期末测试卷及答案
- 广西柳州铁路第一中学2026届化学高三上期末质量跟踪监视模拟试题含解析
- 马克思主义原理课件目录
- 露天采石场安全监管
- 银行信贷经理业务绩效考核表
- 福建省福州市钱塘小学2025-2026学年三年级上学期期中素养测评数学试卷(含答案)
- 2025-2026学年人教版(新教材)小学信息科技三年级全一册(上册)期末综合测试卷及答案
- 2025年广西普法考试题库及答案
- 低碳饮食课件
评论
0/150
提交评论