版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届湖北省黄冈市巴驿中学高二数学第一学期期末学业质量监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数满足,则曲线在点处的切线方程为()A. B.C. D.2.观察:则第行的值为()A. B.C. D.3.已知直线与抛物线C:相交于A,B两点,O为坐标原点,,的斜率分别为,,则()A. B.C. D.4.设是等差数列的前n项和,若,,则()A.26 B.-7C.-10 D.-135.若,则()A B.C. D.6.用1,2,3,4这4个数字可写出()个没有重复数字的三位数A.24 B.12C.81 D.647.已知圆与抛物线的准线相切,则实数p的值为()A.2 B.6C.3或8 D.2或68.曲线的离心率为()A. B.C. D.9.已知,是双曲线的左右焦点,过的直线与曲线的右支交于两点,则的周长的最小值为()A. B.C. D.10.设是定义在R上的函数,其导函数为,满足,若,则()A. B.C. D.a,b的大小无法判断11.若数列的通项公式为,则该数列的第5项为()A. B.C. D.12.已知命题:,命题:,则是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.若动直线分别与函数和的图像交于A,B两点,则的最小值为______14.已知一组数据的平均数为4,方差为3,若另一组数据的平均数为10,则该组数据的方差为_______.15.基础建设对社会经济效益产生巨大的作用.某市投入亿元进行基础建设,年后产生亿元社会经济效益.若该市投资基础建设4年后产生的社会经济效益是投资额的2倍,则再过______年.该项投资产生的社会经济效益是投资额的8倍16.以下四个关于圆锥曲线的命题中:①设A、B为两个定点,k为非零常数,若,则动点P的轨迹为双曲线;②抛物线焦点坐标是;③过定圆C上一定点A作圆的动弦AB,O为坐标原点,若,则动点P的轨迹为椭圆;④曲线与曲线(且)有相同的焦点其中真命题的序号为______(写出所有真命题的序号.)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知各项均为正数的等差数列满足,且,,构成等比数列的前三项.(1)求数列,的通项公式;(2)设,求数列的前项和.18.(12分)已知数列和中,,且,.(1)写出,,,,猜想数列和的通项公式并证明;(2)若对于任意都有,求的取值范围.19.(12分)以直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,已知直线的极坐标方程为,曲线的参数方程是(为参数(1)求直线和曲线的普通方程;(2)直线与轴交于点,与曲线交于,两点,求20.(12分)已知动圆过点,且与直线:相切(1)求动圆圆心的轨迹方程;(2)若过点且斜率的直线与圆心的轨迹交于两点,求线段的长度21.(12分)已知双曲线的左焦点为,到的一条渐近线的距离为1.直线与交于不同的两点,,当直线经过的右焦点且垂直于轴时,.(1)求的方程;(2)是否存在轴上的定点,使得直线过点时,恒有?若存在,求出点的坐标;若不存在,请说明理由.22.(10分)已知是奇函数.(1)求的值;(2)若,求的值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】求出函数的导数,利用导数的定义求解,然后求解切线的斜率即可【详解】解:函数,可得,,可得,即,所以,可得,解得,所以,所以曲线在点处的切线方程为故选:A2、B【解析】根据数阵可知第行为,利用等差数列求和,即可得到答案;【详解】根据数阵可知第行为,,故选:B3、C【解析】设,,由消得:,又,由韦达定理代入计算即可得答案.【详解】设,,由消得:,所以,故.故选:C【点睛】本题主要考查了直线与抛物线的位置关系,直线的斜率公式,考查了转化与化归的思想,考查了学生的运算求解能力.4、C【解析】直接利用等差数列通项和求和公式计算得到答案.【详解】,,解得,故.故选:C.5、D【解析】直接利用向量的坐标运算求解即可【详解】因为,所以,故选:D6、A【解析】由题意,从4个数中选出3个数出来全排列即可.【详解】由题意,从4个数中选出3个数出来全排列,共可写出个三位数.故选:A7、D【解析】由抛物线准线与圆相切,结合抛物线方程,令求切线方程且抛物线准线方程为,即可求参数p.【详解】圆的标准方程为:,故当时,有或,所以或,得或6故选:D8、C【解析】由曲线方程直接求离心率即可.【详解】由题设,,,∴离心率.故选:C.9、C【解析】根据双曲线的定义和性质,当弦垂直于轴时,即可求出三角形的周长的最小值.【详解】由双曲线可知:的周长为.当轴时,周长最小值为故选:C10、A【解析】首先构造函数,再利用导数判断函数的单调性,即可判断选项.【详解】设,,所以函数在单调递增,即,所以,那么,即.故选:A11、C【解析】直接根据通项公式,求;【详解】,故选:C12、B【解析】利用充分条件和必要条件的定义判断.【详解】因为命题:或,命题:,所以是的必要不充分条件,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用导数求出与平行的曲线的切线,再利用两点间距离公式进行求解即可.【详解】设曲线的切点为,由,所以曲线的切线的斜率为,直线的斜率为,当切线与平行时,即,即切点为,当直线过切点时,有最小值,即,此时,解方程组:,,故答案为:【点睛】关键点睛:利用曲线的切线性质进行求解是解题的关键.14、12【解析】根据题意,先通过原始数据的平均数、方差及新数据的平均数求出k,进而求出新数据的方差.【详解】由题意,原式数据的平均数和方程分别为:,则新数据的平均数,于是新数据的方差.故答案为:12.15、8【解析】由4年后产生的社会经济效益是投资额的2倍,代入已知函数式求得参数,再求得社会经济效益是投资额的8倍时的时间,即为所求结论【详解】由条件得,∴,即.设投资年后,产生的社会经济效益是投资额的8倍,则有,解得,所以再过年,该项投资产生社会经济效益是投资额的8倍故答案为:816、②④##④②【解析】利用双曲线定义判断命题①;写出抛物线焦点判断命题②;分析点P满足的关系判断命题③;按取值讨论计算半焦距判断命题④作答.【详解】对于①,因双曲线定义中要求,则命题①不正确;对于②,抛物线化为:,其焦点坐标是,命题②正确;对于③,令定圆C的圆心为C,因,则点P是弦AB的中点,当P与C不重合时,有,点P在以线段AC为直径的圆上,当P与C重合时,点P也在以线段AC为直径的圆上,因此,动点P的轨迹是以线段AC为直径的圆(除A点外),则命题③不正确;对于④,曲线的焦点为,当时,椭圆中半焦距c满足:,其焦点为,当时,双曲线中半焦距满足:,其焦点为,因此曲线与曲线(且)有相同的焦点,命题④正确,所以真命题的序号为②④.故答案为:②④【点睛】易错点睛:椭圆长短半轴长分别为a,b,半焦距为c满足关系式:;双曲线的实半轴长、虚半轴长、半焦距分别为、、满足关系式:,在同一问题中出现认真区分,不要混淆.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),,;(2).【解析】(1)由等差中项的性质可求出,又,,构成等比数列,设出公差,代入可求出,从而求出数列的通项公式,代入可求出,的值,从而求出数列的通项公式;(2)将通项公式代入,运用裂项相消的方法可求出前项和.【详解】解析:(1)因为等差数列中,,所以,设数列公差为,因为,,构成等比数列,则,即,解得或(舍)即,又等比数列中,,所以,;(2)∵,∴,∴【点睛】易错点睛:(1)裂项相消时一定要注意分母的差,一般情况下分母的差是几,则要在裂项前面乘以几分之一;(2)裂项相消时要注意保留的项数.18、(1),,,证明见解析(2)【解析】(1)已知两式相加化简可得是首项为2,公比为2的等比数列,则,两式相减化简可得是首项为2,公差为2的等差数列,则,(2)由题意可得只需要,令,由和解不等式可求出的最小值,从而可求得的取值范围【小问1详解】由已知得,猜想,,由题得,所以易知,即所以是首项为2,公比为2的等比数列,故,由题得,所以,即,所以是首项为2,公差为2的等差数列,所以.【小问2详解】因为任意都有,即,只需要,记,易知,故,当时,,解得或,当时,,解得,因为,所以,所以,所以的取值范围是.19、(1),(2)4【解析】(1)根据,即可将直线的极坐标方程转化为普通方程;消参数,即可求出曲线的普通方程;(2)由题意易知,求出直线的参数方程,将其代入曲线的普通方程,利用一元二次方程根和系数关系式的应用,即可求出结果【小问1详解】解:直线极坐标方程为,即,又,可得的普通方程为,曲线的参数方程是(为参数,消参数,所以曲线的普通方程为【小问2详解】解:在中令得,,倾斜角,的参数方程可设为,即(为参数),将其代入,得,,设,对应的参数分别为,,则,,,异号,.20、(1);(2).【解析】(1)由题意分析圆心符合抛物线定义,然后求轨迹方程;(2)直接联立方程组,求出弦长.【详解】解:(1)圆过点,且与直线相切点到直线的距离等于由抛物线定义可知点的轨迹是以为焦点、以为准线的抛物线,依题意,设点的轨迹方程为,则,解得,所以,动圆圆心的轨迹方程是(2)依题意可知直线,设联立,得,则,所以,线段的长度为【点睛】(1)待定系数法、代入法可以求二次曲线的标准方程;(2)“设而不求”是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题.21、(1);(2)存在,理由见解析.【解析】(1)根据题意,列出的方程组,解得,则椭圆方程得解;(2)假设存在点满足题意,设出直线的方程,联立双曲线方程,利用韦达定理以及,即可求解.【小问1详解】双曲线的左焦点,其中一条渐近线,则;对双曲线,令,解得,则,解得,故双曲线方程为:.小问2详解】根据(1)中所求可知,假设存在轴上的点满足题意,若直线的斜率不为零,则设其方程为,联立双曲线方程,可得,则,即,此时直线与双曲线交于两点,则,则,即,即,则,此时满足题意;若直线的斜率为零,且过点,此时,满足题意.综上所述,存在轴上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学校开展校园安全隐患和矛盾纠纷大排查大整治大督查情况记录表
- 2024年国家烟草专卖局中国烟草总公司考试真题
- 白坯布课程设计
- 2025年中日友好医院公开招聘药物临床试验研究中心I期临床试验病房合同制人员的备考题库及一套答案详解
- 2025恒丰银行西安分行社会招聘(21人)备考考试题库及答案解析
- 2025年智能电表十年市场增长:远程抄表与能源监测数据分析报告
- vb课程设计之背单词
- 2025年大连市公安局面向社会公开招聘警务辅助人员348人备考题库有答案详解
- 2025年非遗缂丝十年传承:高端定制与品牌建设报告
- 2025年中国社会科学院工业经济研究所非事业编制人员招聘备考题库及参考答案详解
- 甘肃省天水市麦积区2024届九年级上学期期末考试数学试卷(含答案)
- 10Kv电力变压器试验报告
- 市政工程试验检测培训教程
- 宁夏调味料项目可行性研究报告
- GRR计算表格模板
- 长沙市长郡双语实验学校人教版七年级上册期中生物期中试卷及答案
- 马克思主义经典著作选读智慧树知到课后章节答案2023年下四川大学
- GB/T 19867.1-2005电弧焊焊接工艺规程
- GB/T 16102-1995车间空气中硝基苯的盐酸萘乙二胺分光光度测定方法
- GB/T 15171-1994软包装件密封性能试验方法
- 外科护理学期末试卷3套18p
评论
0/150
提交评论