2026届安徽省阜阳市临泉县第一中学数学高二上期末达标检测模拟试题含解析_第1页
2026届安徽省阜阳市临泉县第一中学数学高二上期末达标检测模拟试题含解析_第2页
2026届安徽省阜阳市临泉县第一中学数学高二上期末达标检测模拟试题含解析_第3页
2026届安徽省阜阳市临泉县第一中学数学高二上期末达标检测模拟试题含解析_第4页
2026届安徽省阜阳市临泉县第一中学数学高二上期末达标检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届安徽省阜阳市临泉县第一中学数学高二上期末达标检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.经过点A(0,-3)且斜率为2的直线方程为()A. B.C. D.2.在等比数列中,,,则等于A. B.C. D.或3.若函数在区间内存在单调递增区间,则实数的取值范围是()A. B.C. D.4.设,若函数,有大于零的极值点,则A. B.C. D.5.在空间直角坐标系中,已知点,,则线段的中点坐标与向量的模长分别是()A.;5 B.;C.; D.;6.古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点A,B的距离之比为定值的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.在平面直角坐标系中,,点P满足,设点P的轨迹为C,下列结论正确的是()A.C的方程为B.当A,B,P三点不共线时,面积的最大值为24C.当A,B,P三点不共线时,射线是的角平分线D.在C上存在点M,使得7.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,他所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,而是逐项差数之差或者高次差相等.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有一个高阶等差数列,其前6项分别为1,5,11,21,37,61,则该数列的第7项为()A.95 B.131C.139 D.1418.已知向量,,且,则的值为()A. B.C.或 D.或9.过两点、的直线的倾斜角为,则的值为()A.或 B.C. D.10.已知,则“”是“直线与平行”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件11.某研究所计划建设n个实验室,从第1实验室到第n实验室的建设费用依次构成等差数列,已知第7实验室比第2实验室的建设费用多15万元,第3实验室和第6实验室的建设费用共为61万元.现在总共有建设费用438万元,则该研究所最多可以建设的实验室个数是()A.10 B.11C.12 D.1312.已知两圆相交于两点,,两圆圆心都在直线上,则值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若正实数满足则的最小值为________________________14.已知一组样本数据5、6、a、6、8的极差为5,若,则其方差为________.15.在△ABC中,角A,B,C所对的边分别为a,b,c,设△ABC的面积为S,其中,,则S的最大值为______16.展开式的常数项是________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设二次函数.(1)若是函数的两个零点,且最小值为.①求证:;②当且仅当a在什么范围内时,函数在区间上存在最小值?(2)若任意实数t,在闭区间上总存在两实数m,n,使得成立,求实数a的取值范围.18.(12分)中国共产党建党100周年华诞之际,某高校积极响应党和国家的号召,通过“增强防疫意识,激发爱国情怀”知识竞赛活动,来回顾中国共产党从成立到发展壮大的心路历程,表达对建党100周年以来的丰功伟绩的传颂.教务处为了解学生对相关知识的掌握情况,随机抽取了100名学生的竞赛成绩,并以此为样本绘制了如下样本频率分布直方图(1)求值并估计中位数所在区间(2)需要从参赛选手中选出6人代表学校参与省里的此类比赛,你认为怎么选最合理,并说明理由19.(12分)在实验室中,研究某种动物是否患有某种传染疾病,需要对其血液进行检验.现有份血液样本,有以下两种检验方式:一是逐份检验,则需要检验n次;二是混合检验,将其中k(且)份血液样本分别取样混合在一起检验,如果检验结果为阴性,这k份的血液全为阴性,因而这k份血液样本只要检验一次就够了;如果检验结果为阳性,为了明确这k份究竟哪些为阳性,就需要对它们再次取样逐份检验,那么这k份血液的检验次数共为次.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的.且每份样本是阳性结果的概率为(1)假设有5份血液样本,其中只有2份血液样本为阳性,若采用逐份检验方式,求恰好经过3次检验就能把阳性样本全部检测出来的概率;(2)假设有4份血液样本,现有以下两种方案:方案一:4个样本混合在一起检验;方案二:4个样本平均分为两组,分别混合在一起检验若检验次数的期望值越小,则方案越优现将该4份血液样本进行检验,试比较以上两个方案中哪个更优?20.(12分)已知集合,.若,且“”是“”的充分不必要条件,求实数a的取值范围21.(12分)如图,在四棱锥中,底面ABCD为矩形,侧面PAD是正三角形,平面平面ABCD,M是PD的中点(1)证明:平面PCD;(2)若PB与底面ABCD所成角的正切值为,求二面角的正弦值22.(10分)已知椭圆:的一个顶点为,离心率为,直线与椭圆交于不同的两点M,N(1)求椭圆的标准方程;(2)当的面积为时,求的值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】直接代入点斜式方程求解即可详解】因为直线经过点且斜率为2,所以直线的方程为,即,故选:2、D【解析】∵为等比数列,∴,又∴为的两个不等实根,∴∴或∴故选D3、D【解析】求出函数的导数,问题转化为在有解,进而求函数的最值,即可求出的范围.【详解】∵,∴,若在区间内存在单调递增区间,则有解,故,令,则在单调递增,,故.故选:D.4、B【解析】设,则,若函数在x∈R上有大于零的极值点即有正根,当有成立时,显然有,此时.由,得参数a的范围为.故选B考点:利用导数研究函数的极值5、B【解析】根据给定条件利用中点坐标公式及空间向量模长的坐标表示计算作答.【详解】因点,,所以线段的中点坐标为,.故选:B6、C【解析】根据题意可求出C的方程为,即可根据题意判断各选项的真假【详解】对A,由可得,化简得,即,A错误;对B,当A,B,P三点不共线时,点到直线的最大距离为,所以面积的最大值为,B错误;对C,当A,B,P三点不共线时,因为,所以射线是的角平分线,C正确;对D,设,由可得点的轨迹方程为,而圆与圆的圆心距为,两圆内含,所以这样的点不存在,D错误故选:C7、A【解析】利用已知条件,推出数列的差数的差组成的数列是等差数列,转化求解即可【详解】由题意可知,1,5,11,21,37,61,……,的差的数列为4,6,10,16,24,……,则这个数列的差组成的数列为:2,4,6,8,……,是一个等差数列,设原数列的第7项为,则,解得,所以原数列的第7项为95,故选:A8、C【解析】根据空间向量平行的性质得,代入数值解方程组即可.【详解】因为,所以,所以,所以,解得或.故选:C.9、D【解析】利用斜率公式可得出关于实数的等式与不等式,由此可解得实数的值.详解】由斜率公式可得,即,解得.故选:D.10、A【解析】首先由两直线平行的充要条件求出参数的取值,再根据充分条件、必要条件的定义判断即可;【详解】因为直线与平行,所以,解得或,所以“”是“直线与平行”的充分不必要条件.故选:A.11、C【解析】根据等差数列通项公式,列出方程组,求出的值,进而求出令根据题意令,即可求解.【详解】设第n实验室的建设费用为万元,其中,则为等差数列,设公差为d,则由题意可得,解得,则.令,即,解得,又,所以,,所以最多可以建设12个实验室.故选:C.12、A【解析】由相交弦的性质,可得与直线垂直,且的中点在这条直线上;由与直线垂直,可得,解可得的值,即可得的坐标,进而可得中点的坐标,代入直线方程可得;进而将、相加可得答案【详解】根据题意,由相交弦的性质,相交两圆的连心线垂直平分相交弦,可得与直线垂直,且的中点在这条直线上;由与直线垂直,可得,解可得,则,故中点为,且其在直线上,代入直线方程可得,1,可得;故;故选:A【点睛】方法点睛:解答圆和圆的位置关系时,要注意利用平面几何圆的知识来分析解答.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用基本不等式即可求解.【详解】,,又,,,当且仅当即,等号成立,.故答案为:【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.14、2【解析】根据极差的定义可求得a的值,再根据方差公式可求得结果.【详解】因为该组数据的极差为5,,所以,解得.因为,所以该组数据的方差为故答案为:.15、【解析】应用余弦定理有,再由三角形内角性质及同角三角函数平方关系求,根据基本不等式求得,注意等号成立条件,最后利用三角形面积公式求S的最大值.【详解】由余弦定理知:,而,所以,而,即,当且仅当时等号成立,又,当且仅当时等号成立.故答案为:16、【解析】求出的通项公式,令的指数为0,即可求解.【详解】的通项公式是,,依题意,令,所以的展开式中的常数项为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)①证明见解析;②(2)【解析】(1)①根据二次函数的性质和一元二次方程的求根公式,求得,即可证得;②由①知,区间,根据二次函数的性质,即可求解.(2)存在两实数,使得成立,转化为在区间上,有成立,设﹐结合二次函数的图象与性质,分类讨论,即可求解.【小问1详解】解:①由题意,函数二次函数,因为最小值为,可得,即,因为,所以根据求根公式得,所以.②由①知,区间因为,对称轴,且函数在区间上存在最小值,所以,因为,所以解得,所以,即a的取值范围为.【小问2详解】解:存在两实数,使得成立,则在区间上,有成立,设﹐函数对称轴为①当即时,在上单调减,,此时;②当即时,,此时③当即时,,此时;④当即时,,此时;综合①②③④得,且最小值为,因为对任意实数t,都有,所以只需,即,所以实数a的取值范围.18、(1);中位数所在区间(2)选90分以上的人去参赛;答案见解析【解析】(1)根据频率分布直方图中,所有小矩形面积和为1,即可求得a值,根据各组的频率,即可分析中位数所在区间.(2)计算可得之间共有6人,满足题意,分析即可得答案.【小问1详解】,解得成绩在区间上的频率为,,所以中位数所在区间,【小问2详解】选成绩最好的同学去参赛,分数在之间共有人,所以选90分以上的人去参赛.(其它方案如果合理也可以给分)19、(1)(2)方案一更优【解析】(1)分两类,由古典概型可得;(2)分别求出两种方案的数学期望,然后比较可知.【小问1详解】恰好经过3次检验就能把阳性样本全部检测出来分为两种情况:第一种:前两次检测中出现一次阳性一次阴性且第三次为阳性第二种:前三次检测均阴性,所以概率为【小问2详解】方案一:混在一起检验,记检验次数为X,则X的取值范围是,,,方案二:每组的两个样本混合在一起检验,若结果呈阴性,则检验次数为1,其概率为,若结果呈阳性,则检验次数为3,其概率为设检验次数为随机变量Y,则Y的取值范围是,,,,,所以,方案一更优20、【解析】由题设A是的真子集,结合已知集合的描述列不等式求a的范围.【详解】由“”是“”的充分不必要条件,即A是的真子集,又,,所以,可得,则实数a的取值范围为21、(1)证明见解析(2)【解析】(1)依题意可得,再根据面面垂直的性质得到平面,即可得到,即可得证;(2)取的中点为,连接,根据面面垂直的性质得到平面,连接,即可得到为与底面所成角,令,,利用锐角三角函数的定义求出,建立如图所示空间直角坐标系,利用空间向量法求出二面角的余弦值,即可得解;【小问1详解】解:证明:在正中,为的中点,∴∵平面平面,平面平面,且.∴平面,又∵平面∴.又∵,且,平面.∴平面【小问2详解】解:如图,取的中点为,连接,在正中,,平面平面,平面平面,∴平面,连接,则为与底面所成角,即.不妨取,,,,∴以为原点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论