2026届陕西省五校高一上数学期末检测试题含解析_第1页
2026届陕西省五校高一上数学期末检测试题含解析_第2页
2026届陕西省五校高一上数学期末检测试题含解析_第3页
2026届陕西省五校高一上数学期末检测试题含解析_第4页
2026届陕西省五校高一上数学期末检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届陕西省五校高一上数学期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.借助信息技术画出函数和(a为实数)的图象,当时图象如图所示,则函数的零点个数为()A.3 B.2C.1 D.02.已知,,则下列说法正确的是()A. B.C. D.3.设正实数满足,则的最大值为()A. B.C. D.4.过点且与直线垂直的直线方程为A. B.C. D.5.已知函数在区间上单调递减,则实数的取值范围是()A. B.C. D.6.下列说法正确的是()A.向量与共线,与共线,则与也共线B.任意两个相等的非零向量的始点与终点是一个平行四边形的四个顶点C.向量与不共线,则与都是非零向量D.有相同起点的两个非零向量不平行7.若角(0≤≤2π)的终边过点,则=(

)A. B.C. D.8.已知aR且a>b,则下列不等式一定成立的是()A.> B.>abC.> D.a(a—b)>b(a—b)9.已知当时,函数取最大值,则函数图象的一条对称轴为A. B.C. D.10.已知直线⊥平面,直线平面,给出下列命题:①∥②⊥∥③∥⊥④⊥∥其中正确命题的序号是A.①③ B.②③④C.①②③ D.②④二、填空题:本大题共6小题,每小题5分,共30分。11.在直角中,三条边恰好为三个连续的自然数,以三个顶点为圆心的扇形的半径为1,若在中随机地选取个点,其中有个点正好在扇形里面,则用随机模拟的方法得到的圆周率的近似值为__________.(答案用,表示)12.函数的定义域为_________________________13.函数的图像恒过定点___________14.已知扇形的半径为2,面积为,则该扇形的圆心角的弧度数为______.15.函数的单调递增区间为___________.16.已知,则的最大值为_______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列满足(,且),且,设,,数列满足.(1)求证:数列是等比数列并求出数列的通项公式;(2)求数列的前n项和;(3)对于任意,,恒成立,求实数m的取值范围.18.已知函数为奇函数(1)求的值;(2)当时,关于的方程有零点,求实数的取值范围19.已知函数f(x)=coscos-sinxcosx+(1)求函数f(x)的最小正周期和最大值;(2)求函数f(x)单调递增区间20.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠BCD=60°,AB=2AD,PD⊥平面ABCD,点M为PC的中点(1)求证:PA∥平面BMD;(2)求证:AD⊥PB;(3)若AB=PD=2,求点A到平面BMD的距离21.已知两条直线l1:ax+2y-1=0,l2:3x+(a+1)y+1=0.(1)若l1∥l2,求实数a的值;(2)若l1⊥l2,求实数a的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由转化为与的图象交点个数来确定正确选项.【详解】令,,所以函数的零点个数即与的图象交点个数,结合图象可知与的图象有个交点,所以函数有个零点.故选:B2、C【解析】根据已知条件逐个分析判断【详解】对于A,因为,所以A错误,对于B,因为,所以集合A不是集合B的子集,所以B错误,对于C,因为,,所以,所以C正确,对于D,因为,,所以,所以D错误,故选:C3、C【解析】根据基本不等式可求得最值.【详解】由基本不等式可得,即,解得,当且仅当,即,时,取等号,故选:C.4、D【解析】所求直线的斜率为,故所求直线的方程为,整理得,选D.5、C【解析】求出函数的定义域,由单调性求出a的范围,再由函数在上有意义,列式计算作答.【详解】函数定义域为,,因在,上单调,则函数在,上单调,而函数在区间上单调递减,必有函数在上单调递减,而在上递增,则在上递减,于是得,解得,由,有意义得:,解得,因此,,所以实数的取值范围是.故选:C6、C【解析】根据共线向量(即平行向量)定义即可求解.【详解】解:对于A:可能是零向量,故选项A错误;对于B:两个向量可能在同一条直线上,故选项B错误;对于C:因为与任何向量都是共线向量,所以选项C正确;对于D:平行向量可能在同一条直线上,故选项D错误故选:C.7、D【解析】由题意可得:,由可知点位于第一象限,则.据此可得:.本题选择D选项.8、D【解析】对于A,B,C举反例判断即可,对于D,利用不等式的性质判断【详解】解:对于A,若,则,所以A错误;对于B,若,则,此时,所以B错误;对于C,若,则,此时,所以C错误;对于D,因为,所以,所以,所以D正确,故选:D9、A【解析】由最值确定参数a,再根据正弦函数性质确定对称轴【详解】由题意得因此当时,,选A.【点睛】本题考查三角函数最值与对称轴,考查基本分析求解能力,属基础题.10、A【解析】利用线面、面面平行的性质和判断以及线面、面面垂直的性质和判断可得结果.【详解】②若,则与不一定平行,还可能为相交和异面;④若,则与不一定平行,还可能是相交.故选A.【点睛】本题是一道关于线线、线面、面面关系的题目,解答本题的关键是熟练掌握直线与平面和平面与平面的平行、垂直的性质定理和判断定理.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由题意得的三边分别为则由可得,所以,三角数三边分别为,因为,所以三个半径为的扇形面积之和为,由几何体概型概率计算公式可知,故答案为.【方法点睛】本题题主要考查“面积型”的几何概型,属于中档题.解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时,忽视验证事件是否等可能性导致错误.12、(-1,2).【解析】分析:由对数式真数大于0,分母中根式内部的代数式大于0联立不等式组求解x的取值集合得答案详解:由,解得﹣1<x<2∴函数f(x)=+ln(x+1)的定义域为(﹣1,2)故答案为(﹣1,2)点睛:常见基本初等函数定义域的基本要求(1)分式函数中分母不等于零(2)偶次根式函数的被开方式大于或等于0.(3)一次函数、二次函数的定义域均为R.(4)y=x0定义域是{x|x≠0}(5)y=ax(a>0且a≠1),y=sinx,y=cosx的定义域均为R.(6)y=logax(a>0且a≠1)的定义域为(0,+∞)13、【解析】根据指数函数过定点,结合函数图像平移变换,即可得过的定点.【详解】因为指数函数(,且)过定点是将向左平移2个单位得到所以过定点.故答案为:.14、【解析】由扇形的面积公式和弧度制的定义,即可得出结果.【详解】由扇形的面积公式可得,所以圆心角为.故答案为:15、【解析】根据复合函数“同增异减”的原则即可求得答案.【详解】由,设,对称轴为:,根据“同增异减”的原则,函数的单调递增区间为:.故答案为:.16、【解析】消元,转化为求二次函数在闭区间上的最值【详解】,,时,取到最大值,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)(3).【解析】(1)将式子写为:得证,再通过等比数列公式得到的通项公式.(2)根据(1)得到进而得到数列通项公式,再利用错位相减法得到前n项和.(3)首先判断数列的单调性计算其最大值,转换为二次不等式恒成立,将代入不等式,计算得到答案.【详解】(1)因为,所以,,所以是等比数列,其中首项是,公比为,所以,.(2),所以,由(1)知,,又,所以.所以,所以两式相减得.所以.(3),所以当时,,当时,,即,所以当或时,取最大值是.只需,即对于任意恒成立,即所以.【点睛】本题考查了等比数列的证明,错位相减法求前N项和,数列的单调性,数列的最大值,二次不等式恒成立问题,综合性强,计算量大,意在考查学生解决问题的能力.18、(1)(2)【解析】(1)利用函数为奇函数所以即得的值(2)方程有零点,转化为求的值域即可得解.试题解析:(1)∵,∴,∴(2)∵,∴,∵,∴,∴,∴19、(1)最小正周期为T=π,最大值为(2)[kπ-58π,kπ【解析】(Ⅰ)函数的最小正周期为,函数的最大值为(II)由得函数的单调递增区间为[kπ-5π20、(1)详见解析;(2)详见解析;(3).【解析】(1)设AC和BD交于点O,MO为三角形PAC的中位线可得MO∥PA,再利用直线和平面平行的判定定理,证得结论(2)由PD⊥平面ABCD,可得PD⊥AD,再由cos∠BAD,证得AD⊥BD,可证AD⊥平面PBD,从而证得结论(3)点A到平面BMD的距离等于点C到平面BMD的距离h,求出MN、MO的值,利用等体积法求得点C到平面MBD的距离h【详解】(1)证明:设AC和BD交于点O,则由底面ABCD是平行四边形可得O为AC的中点由于点M为PC的中点,故MO为三角形PAC的中位线,故MO∥PA.再由PA不在平面BMD内,而MO在平面BMD内,故有PA∥平面BMD(2)由PD⊥平面ABCD,可得PD⊥AD,平行四边形ABCD中,∵∠BCD=60°,AB=2AD,∴cos∠BADcos60°,∴AD⊥BD这样,AD垂直于平面PBD内的两条相交直线,故AD⊥平面PBD,∴AD⊥PB(3)若AB=PD=2,则AD=1,BD=AB•sin∠BAD=2,由于平面BMD经过AC的中点,故点A到平面BMD的距离等于点C到平面BMD的距离取CD得中点N,则MN⊥平面ABCD,且MNPD=1设点C到平面MBD的距离为h,则h为所求由AD⊥PB可得BC⊥PB,故三角形PBC为直角三角形由于点M为PC的中点,利用直角三角形斜边的中线等于斜边的一半,可得MD=MB,故三角形MBD为等腰三角形,故MO⊥BD由于PA,∴MO由VM﹣BCD=VC﹣MBD可得,•()•MN•(BD×MO)×h,故有()×1•()•h,解得h【点睛】本题主要考查直线和平面平行的判定定理,直线和平面垂直的性质,用等体积法求点到平面的距离,体

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论