陕西省育才中学2026届高二上数学期末检测模拟试题含解析_第1页
陕西省育才中学2026届高二上数学期末检测模拟试题含解析_第2页
陕西省育才中学2026届高二上数学期末检测模拟试题含解析_第3页
陕西省育才中学2026届高二上数学期末检测模拟试题含解析_第4页
陕西省育才中学2026届高二上数学期末检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省育才中学2026届高二上数学期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.用3,4,5,6,7,9这6个数组成没有重复数字的六位数,下列结论正确的有()A.在这样的六位数中,奇数共有480个B.在这样的六位数中,3、5、7、9相邻的共有120个C.在这样的六位数中,4,6不相邻的共有504个D.在这样六位数中,4个奇数从左到右按照从小到大排序的共有60个2.已知等比数列的公比为,则“是递增数列”的一个充分条件是()A. B.C. D.3.已知双曲线,过原点作一条倾斜角为的直线分别交双曲线左、右两支于、两点,以线段为直径的圆过右焦点,则双曲线的离心率为().A. B.C. D.4.已知数据的平均数是,方差是4,则数据的方差是()A.3.4 B.3.6C.3.8 D.45.设AB是椭圆()的长轴,若把AB一百等分,过每个分点作AB的垂线,交椭圆的上半部分于P1、P2、…、P99,F1为椭圆的左焦点,则的值是()A. B.C. D.6.已知随机变量,且,,则为()A.0.1358 B.0.2716C.0.1359 D.0.27187.双曲线的焦点到渐近线的距离为()A.1 B.2C. D.8.执行如图所示的程序框图,若输出的的值为,则输入的的值可能为()A.96 B.97C.98 D.999.已知双曲线的一条渐近线方程是,它的一个焦点在抛物线的准线上,则双曲线的方程为()A. B.C. D.10.在等比数列中,,是方程的两个实根,则()A.-1 B.1C.-3 D.311.两圆与的公切线有()A.1条 B.2条C.3条 D.4条12.已知,,,,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若恒成立,则______.14.已知点为双曲线的左焦点,过原点的直线l与双曲线C相交于P,Q两点.若,则______15.已知点在直线上,则的最小值为___________.16.已知直线与双曲线交于两点,则该双曲线的离心率的取值范围是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的前项和为,且(1)求数列的通项公式;(2)若,求数列的前项和.18.(12分)如图,在四棱锥中,底面满足,,底面,且,.(1)证明平面;(2)求平面与平面的夹角.19.(12分)已知椭圆的左、右顶点坐标分别是,,短轴长等于焦距.(1)求椭圆的方程;(2)若直线与椭圆相交于两点,线段的中点为,求.20.(12分)圆过点A(1,-2),B(-1,4),求:(1)周长最小的圆的方程;(2)圆心在直线2x-y-4=0上的圆的方程21.(12分)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表等级ABCD频数40202020乙分厂产品等级的频数分布表等级ABCD频数28173421(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?22.(10分)【2018年新课标I卷文】已知函数(1)设是的极值点.求,并求的单调区间;(2)证明:当时,

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】A选项,特殊位置优先考虑求出这样的六位数中,奇数个数;B选项,相邻问题捆绑法求解;C选项,不相邻问题插空法求解;D选项,定序问题使用倍缩法求解.【详解】用3,4,5,6,7,9这6个数组成没有重复数字的六位数,个位为3,5,7,9中的一位,有种,其余五个数位上的数字进行全排列,有种,综上:在这样的六位数中,奇数共有个,A正确;在这样的六位数中,3、5、7、9相邻,将3、5、7、9捆绑,有种排法,再与4,6进行全排列,故共有个,B错误;在这样的六位数中,4,6不相邻,先将3、5、7、9进行全排列,再从五个位置中任选两个将4,6排列,综上共有个,C错误;在这样的六位数中,4个奇数从左到右按照从小到大排序的共有个,D错误.故选:A2、D【解析】由等比数列满足递增数列,可进行和两项关系的比较,从而确定和的大小关系.【详解】由等比数列是递增数列,若,则,得;若,则,得;所以等比数列是递增数列,或,;故等比数列是递增数列是递增数列的一个充分条件为,.故选:D.3、A【解析】设双曲线的左焦点为,连接、,求得、,利用双曲线的定义可得出关于、的等式,即可求得双曲线的离心率.【详解】设双曲线的左焦点为,连接、,如下图所示:由题意可知,点为的中点,也为的中点,且,则四边形为矩形,故,由已知可知,由直角三角形的性质可得,故为等边三角形,故,所以,,由双曲线的定义可得,所以,.故选:A.4、B【解析】利用方差的定义即可解得.【详解】由方差的定义,,则,所以数据的方差为:.故选:B5、D【解析】根据椭圆的定义,写出,可求出的和,又根据关于纵轴成对称分布,得到结果详解】设椭圆右焦点为F2,由椭圆的定义知,2,,,由题意知,,,关于轴成对称分布,又,故所求的值为故选:D6、C【解析】根据正态分布的对称性可求概率.【详解】由题设可得,,故选:C.7、A【解析】分别求出双曲线的焦点坐标和渐近线方程,利用点到直线的距离公式求出结果【详解】双曲线中,焦点坐标为渐近线方程为:∴双曲线的焦点到渐近线的距离故选:A8、D【解析】根据程序框图得出的变换规律后求解【详解】当时,,当时,,当时,,当时,,可得输出的T关于t的变换周期为4,而,故时,输出的值为,故选:D9、A【解析】根据双曲线渐近线方程得a和b的关系,根据焦点在抛物线准线上得c的值,结合a、b、c关系即可求解.【详解】∵双曲线的一条渐近线方程是,∴,∵准线方程是,∴,∵,∴,,∴双曲线标准方程为:.故选:A.10、B【解析】由韦达定理可知,结合等比中项的性质可求出.【详解】解:在等比数列中,由题意知:,,所以,,所以且,即.故选:B.11、D【解析】求得圆心坐标分别为,半径分别为,根据圆圆的位置关系的判定方法,得出两圆的位置关系,即可求解.【详解】由题意,圆与圆,可得圆心坐标分别为,半径分别为,则,所以,可得圆外离,所以两圆共有4条切线.故选:D.12、D【解析】根据对数函数的性质和幂函数的单调性可得正确的选项.【详解】因为,故,故,又,在上的增函数,故,故,故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】利用导数研究的最小值为,再构造研究其最值,即可确定参数a的值.【详解】令,则且,当时,递减;当时,递增;所以,即在上恒成立,令,则,当时,递增;当时,递减;所以,综上,.故答案为:114、7【解析】先证明四边形是平行四边形,再根据双曲线的定义可求解.【详解】由双曲线的对称性,可知,又,所以四边形是平行四边形,所以,由,可知点在双曲线的左支,如下图所示:由双曲线定义有,又,所以.故答案为:15、2【解析】由已知可用表示,代入所求式子后,结合二次函数的性质可求【详解】解:由题意得,即,所以,根据二次函数的性质可知,当时,上式取得最小值4,故的最小值2故答案为:216、【解析】分析可知,由可求得结果.【详解】双曲线的渐近线方程为,由题意可知,.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据,再结合等比数列的定义,即可求出结果;(2)由(1)可知,再利用错位相减法,即可求出结果.【小问1详解】解:因为,当时,,解得当时,,所以,即.所以数列是首项为2,公比为2的等比数列.故.【小问2详解】解:由(1)知,则,所以①②,①-②得.所以数列的前项和18、(1)证明见解析(2)【解析】(1)由已知结合线面平行判定定理可得;(2)建立空间直角坐标系,由向量法可解.【小问1详解】∵,,∴,又平面,平面,∴平面;【小问2详解】∵平面且、平面,∴,,又∵,故分别以所在直线为轴,轴、轴,建立如图空间直角坐标系,如图所示:由,,可得:,,,,,由已知平面,平面,,,,,平面,所以平面,为平面的一个法向量,且;设为平面的一个法向量,则,,,,,,,令,则,,,设平面与平面的夹角大小为,,由得:平面与平面的夹角大小为19、(1);(2).【解析】(1)由椭圆顶点可知,又短轴长等于焦距可知,求出,即可写出椭圆方程(2)根据“点差法”可求直线的斜率,写出直线方程,联立椭圆方程可得,,代入弦长公式即可求解.【详解】(1)依题意,解得.故椭圆方程为.(2)设的坐标分别为,,直线的斜率显然存在,设斜率为,则,两式相减得,整理得.因为线段的中点为,所以,所以直线的方程为,联立,得,则,,故.【点睛】本题主要考查了椭圆的标准方程及简单几何性质,“点差法”,弦长公式,属于中档题.20、(1)x2+(y-1)2=10;(2)(x-3)2+(y-2)2=20.【解析】(1)根据当AB为直径时,过A,B的圆的半径最小进行求解即可;(2)根据垂径定理,通过解方程组求出圆心坐标,进而可以求出圆的方程.【详解】解:(1)当AB为直径时,过A,B的圆的半径最小,从而周长最小,即AB中点(0,1)为圆心,半径r=|AB|=.故圆的方程为x2+(y-1)2=10;(2)由于AB的斜率为k=-3,则AB的垂直平分线的斜率为,AB的垂直平分线的方程是y-1=x,即x-3y+3=0.由解得即圆心坐标是C(3,2)又r=|AC|==2.所以圆的方程是(x-3)2+(y-2)2=20.21、(1)甲分厂加工出来的级品的概率为,乙分厂加工出来的级品的概率为;(2)选甲分厂,理由见解析.【解析】(1)根据两个频数分布表即可求出;(2)根据题意分别求出甲乙两厂加工件产品的总利润,即可求出平均利润,由此作出选择【详解】(1)由表可知,甲厂加工出来的一件产品为级品的概率为,乙厂加工出来的一件产品为级品的概率为;(2)甲分厂加工件产品的总利润为元,所以甲分厂加工件产品的平均利润为元每件;乙分厂加工件产品的总利润为元,所以乙分厂加工件产品的平均利润为元每件故厂家选择甲分厂承接加工任务【点睛】本题主要考查古典概型的概率公式的应用,以及平均数的求法,并根据平均值作出决策,属于基础题22、(1)a=;f(x)在(0,2)单调递减,在(2,+∞)单调递增.(2)证明见解析.【解析】分析:(1)先确定函数的定义域,对函数求导,利用f′(2)=0,求得a=,从而确定出函数的解析式,之后观察导函数的解析式,结合极值点的位置,从而得到函数的增区间和减区间;(2)结合指数函数的值域,可以确定当a≥时,f(x)≥,之后构造新函数g(x)=,利用导数研究函数的单调性,从而求得g(x)≥g(1)=0,利用不等式的传递性,证得结果.详解:(1)f(x)的定义域为,f′(x)=aex–由题设知,f′(2)=0,所以a=从而f(x)=,f′(x)=当0<x<2时,f′(x)<0;当x>2时,f′(x)>0所以f(x)在(0,2)单调递减,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论