2026届安徽省铜陵市浮山中学等重点名校高二数学第一学期期末考试模拟试题含解析_第1页
2026届安徽省铜陵市浮山中学等重点名校高二数学第一学期期末考试模拟试题含解析_第2页
2026届安徽省铜陵市浮山中学等重点名校高二数学第一学期期末考试模拟试题含解析_第3页
2026届安徽省铜陵市浮山中学等重点名校高二数学第一学期期末考试模拟试题含解析_第4页
2026届安徽省铜陵市浮山中学等重点名校高二数学第一学期期末考试模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届安徽省铜陵市浮山中学等重点名校高二数学第一学期期末考试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.()A. B.C. D.2.已知圆上有三个点到直线的距离等于1,则的值为()A. B.C. D.13.执行如图所示的程序框图,若输入的的值为3,则输出的的值为()A.3 B.6C.9 D.124.如果椭圆上一点到焦点的距离等于6,则线段的中点到坐标原点的距离等于()A.7 B.10C.12 D.145.曲线与曲线的()A.实轴长相等 B.虚轴长相等C.焦距相等 D.渐进线相同6.在四面体中,点G是的重心,设,,,则()A. B.C. D.7.设、分别是椭圆()的左、右焦点,过的直线l与椭圆E相交于A、B两点,且,则的长为()A. B.1C. D.8.如果一个矩形长与宽的比值为,那么称该矩形为黄金矩形.如图,已知是黄金矩形,,分别在边,上,且也是黄金矩形.若在矩形内任取一点,则该点取自黄金矩形内的概率为()A. B.C. D.9.已知直线过点,且其方向向量,则直线的方程为()A. B.C. D.10.雅言传承文明,经典浸润人生.某市举办“中华经典诵写讲大赛”,大赛分为四类:“诵读中国”经典诵读大赛、“诗教中国”诗词讲解大赛、“笔墨中国”汉字书写大赛、“印记中国”学生篆刻大赛.某人决定从这四类比赛中任选两类参赛,则“诵读中国”被选中的概率为()A. B.C. D.11.“若”为真命题,那么p是(

)A. B.C. D.12.如图,过抛物线的焦点的直线依次交抛物线及准线于点,若且,则抛物线的方程为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知点是椭圆上的一点,分别为椭圆的左、右焦点,已知=120°,且,则椭圆的离心率为___________.14.已知函数在R上连续且可导,为偶函数且,其导函数满足,则不等式的解集为___.15.已知抛物线:,斜率为且过点的直线与交于,两点,且,其中为坐标原点(1)求抛物线的方程;(2)设点,记直线,的斜率分别为,,证明:为定值16.高二某位同学参加物理、政治科目的学考,已知这位同学在物理、政治科目考试中得A的概率分别为、,这两门科目考试成绩的结果互不影响,则这位考生至少得1个A的概率为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)四棱锥,底面为矩形,面,且,点在线段上,且面.(1)求线段的长;(2)对于(1)中的,求直线与面所成角的正弦值.18.(12分)在平面直角坐标系中,动点,满足,记点的轨迹为(1)请说明是什么曲线,并写出它的方程;(2)设不过原点且斜率为的直线与交于不同的两点,,线段的中点为,直线与交于两点,,请判断与的关系,并证明你的结论19.(12分)已知椭圆,离心率分别为左右焦点,椭圆上一点满足,且的面积为1.(1)求椭圆的标准方程;(2)过点作斜率为的直线交椭圆于两点.过点且平行于的直线交椭圆于点,证明:为定值.20.(12分)已知中心在坐标原点O的椭圆,左右焦点分别为,,离心率为,M,N分别为椭圆的上下顶点,且满足.(1)求椭圆方程;(2)已知点C满足,点T在椭圆上(T异于椭圆的顶点),直线NT与以C为圆心的圆相切于点P,若P为线段NT的中点,求直线NT的方程;(3)过椭圆内的一点D(0,t),作斜率为k的直线l,与椭圆交于A,B两点,直线OA,OB的斜率分别是,,若对于任意实数k,存在实数m,使得,求实数m的取值范围.21.(12分)动点M到点的距离比它到直线的距离小,记M的轨迹为曲线C.(1)求C的方程;(2)已知圆,设P,A,B是C上不同的三点,若直线PA,PB均与圆D相切,若P的纵坐标为,求直线AB的方程.22.(10分)已知椭圆与直线相切,点G为椭圆上任意一点,,,且的最大值为3(1)求椭圆C的标准方程;(2)设直线与椭圆C交于不同两点E,F,点O为坐标原点,且,当的面积取最大值时,求的取值范围

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据微积分基本定理即可直接求出答案.【详解】故选:B.2、A【解析】求出圆心和半径,由题意可得圆心到直线的距离,列方程即可求得的值.【详解】由圆可得圆心,半径,因为圆上有三个点到直线的距离等于1,所以圆心到直线的距离,可得:,故选:A.3、A【解析】模拟执行程序框图,根据输入数据,即可求得输出数据.【详解】当时,不满足,故,即输出的的值为.故选:.4、A【解析】可由椭圆方程先求出,在利用椭圆的定义求出,利用已知求解出,再取的中点,连接,利用中位线,即可求解出线段的中点到坐标原点的距离.【详解】因为椭圆,,所以,结合得,,取的中点,连接,所以为的中位线,所以.故选:A.5、D【解析】将曲线化为标准方程后即可求解.【详解】化为标准方程为,由于,则两曲线实轴长、虚轴长、焦距均不相等,而渐近线方程同为.故选:6、B【解析】结合重心的知识以及空间向量运算求得正确答案.【详解】设是中点,.故选:B7、C【解析】由椭圆的定义得:,,结合条件可得,即可得答案.【详解】由椭圆的定义得:,,又,,所以,由椭圆知,所以.故选:C8、B【解析】由几何概型的面积型,只需求小矩形的面积和大矩形面积之比.【详解】由题意,不妨设,则,又也是黄金矩形,则,又,解得,于是大矩形面积为:,小矩形的面积为,由几何概型的面积型,概率为若在矩形内任取一点,则该点取自黄金矩形内的概率为:.故选:B.9、D【解析】根据题意和直线的点方向式方程即可得出结果.【详解】因为直线过点,且方向向量为,由直线的点方向式方程,可得直线的方程为:,整理,得.故选:D10、B【解析】由已知条件得基本事件总数为种,符合条件的事件数为3中,由古典概型公式直接计算即可.【详解】从四类比赛中选两类参赛,共有种选择,其中“诵读中国”被选中的情况有3种,即“诵读中国”和“诗教中国”,“诵读中国”和“笔墨中国”,“诵读中国”和“印记中国”,由古典概型公式可得,故选:.11、A【解析】求不等式的解集,根据解集判断p.【详解】由解得-2<x<4,所以p是.故选:A.12、D【解析】如图根据抛物线定义可知,进而推断出的值,在直角三角形中求得,进而根据,利用比例线段的性质可求得,则抛物线方程可得.【详解】如图分别过点,作准线的垂线,分别交准线于点,设,则由已知得:,由定义得:,故在直角三角形中,,,,从而得,,求得,所以抛物线的方程为故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设,由余弦定理知,所以,故填.14、【解析】由已知条件可得图象关于对称,在上递增,在上递减,然后分四种情况讨论求解即可【详解】因为为偶函数,所以的图象关于轴对称,所以的图象关于对称,因为,所以当时,,当时,,所以在上递增,在上递减,由,得,或,或,或,解得,或,或,或,综上,,所以等式的解集为故答案为:15、(1)(2)为定值6【解析】(1)由题意可知:将直线方程代入抛物线方程,由韦达定理可知:,,,,求得p的值,即可求得抛物线E的方程;(2)由直线的斜率公式可知:,,,代入,,即可得到:.试题解析:(1)直线的方程为,联立方程组得,设,,所以,,又,所以,从而抛物线的方程为(2)因为,,所以,,因此,又,,所以,即为定值点睛:定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的.定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.16、【解析】根据给定条件利用相互独立事件、对立事件的概率公式计算作答.【详解】依题意,这位考生至少得1个A对立事件为物理、政治科目考试都没有得A,其概率为,所以这位考生至少得1个A的概率为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)1(2)【解析】(1)根据线面垂直得到,再由相似比得方程可求解;(2)建立空间直角坐标系,求平面的法向量,运用夹角公式先求线面角的余弦值,再转化为正弦值即可.小问1详解】面,在矩形中,易得:;【小问2详解】如四建立空间直角坐标系:则,,由题意可知:为平面的一个法向量,,,直线与面所成角的正弦值为.18、(1)椭圆,(2),证明见解析【解析】(1)结合椭圆第一定义直接判断即可求出的轨迹为;(2)设直线的方程为,,,联立椭圆方程,写出韦达定理;由中点公式求出点,进而得出直线方程,联立椭圆方程求出,结合弦长公式可求,可转化为,结合韦达定理可化简,进而得证.【小问1详解】设,,则因为,满足,即动点表示以点,为左、右焦点,长轴长为4,焦距为的椭圆,其轨迹的方程为;【小问2详解】可以判断出,下面进行证明:设直线的方程为,,,由方程组,得①,方程①判别式为,由,即,解得且由①得,,所以点坐标为,直线方程为,由方程组,得,,所以又所以.19、(1)(2)证明见解析【解析】(1)方法一:根据离心率以及,可得出,将条件转化为点在以为直径的圆上,即为圆与椭圆的交点,将的面积用表示,求出,进而求出椭圆的标准方程;方法二:根据椭圆的定义,,再根据勾股定理和直角三角形的面积公式,即可解得,又由离心率求出,则可求出椭圆的标准方程;(2)设出直线的方程,代入椭圆方程,根据韦达定理表示出,再将直线的方程代入椭圆方程,求出,则为定值.【小问1详解】方法一:由离心率,得:,所以椭圆上一点,满足,所以点为圆:与椭圆的交点,联立方程组解得所以,解得:,所以椭圆的标准方程为:.方法二:由椭圆定义;,因为,所以,得到:,即,又,得所以椭圆C的标准方程为:;【小问2详解】设直线AB的方程为:.得设过点且平行于的直线方程:.20、(1)1(2)或(3)【解析】(1)由已知可得,,再结合可求出,从而可求得椭圆方程,(2)设直线,代入椭圆方程中消去,解方程可求出点的坐标,从而可得NT中点的坐标,而,可得解方程可求出的值,即可得到直线NT的方程,(3)设直线,代入椭圆方程中消去,利用根与系数的关系结合直线的斜率公式可得,再由,可求出m的取值范围【小问1详解】设(c,0),M(0,b),N(0,b),①,又②,③,由①②③得,所以椭圆方程为1.【小问2详解】由题C,0),设直线联立得,那么,N(0,)NT中点.所以,因为直线NT与以C为圆心的圆相切于点P,所以所以所以得,解得或所以直线NT为:或.【小问3详解】设直线,联立方程得设A(,),B,),则…由对任意k成立,得点D在椭圆内,所以,所以,所以m的取值范围为.21、(1)(2)【解析】(1)由抛物线的定义可得结论;(2)设,得PA的两点式方程为,由在抛物线上,化简直线方程为,然后由圆心到切线的距离等于半径得出的关系式,并利用得出点满足的等式,同理设得方程,最后由直线方程的定义可得直线方程【小问1详解】由题意得动点M到点的距离等于到直线的距离,所以曲线C是以为焦点,为准线的抛物线.设,则,于是C的方程为.【小问2详解】由(1)可知,设,PA的两点式方程为.由,,可得.因为PA与D相切,所以,整理得.因为,可得.设,同理可得于是直线AB的方程为.22、(1)(2)【解析】(1)设点,根据题意,得到,根据向量数量积的坐标表示,得到,根据其最小值,求出,即可得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论