版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省深圳南头中学2026届数学高一上期末复习检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的零点所在区间是A. B.C. D.2.若且则的值是.A. B.C. D.3.函数的部分图象是()A. B.C. D.4.已知则的值为()A. B.2C.7 D.55.若正实数满足,(为自然对数的底数),则()A. B.C. D.6.已知点,点在轴上且到两点的距离相等,则点的坐标为A.(-3,0,0) B.(0,-3,0)C.(0,0,3) D.(0,0,-3)7.当时,的最大值为()A. B.C. D.8.已知,,则下列不等式中恒成立的是()A. B.C. D.9.已知函数则=()A. B.9C. D.10.设命题,使得,则命题为的否定为()A., B.,使得C., D.,使得二、填空题:本大题共6小题,每小题5分,共30分。11.已知集合A={0,1,2,3,4,5},集合B={1,3,5,7,9},则Venn图中阴影部分表示的集合中元素的个数为________12.函数的单调递增区间是_________13.如图所示,某农科院有一块直角梯形试验田,其中.某研究小组计则在该试验田中截取一块矩形区域试种新品种的西红柿,点E在边上,则该矩形区域的面积最大值为___________.14.设A为圆上一动点,则A到直线的最大距离为________15.已知函数是定义在上的奇函数,当时,,则当时____16.设函数的图象关于y轴对称,且其定义域为,则函数在上的值域为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数,是定义域为R的奇函数(1)确定的值(2)若,判断并证明的单调性;(3)若,使得对一切恒成立,求出的范围.18.某企业为努力实现“碳中和”目标,计划从明年开始,通过替换清洁能源减少碳排放量,每年减少的碳排放量占上一年的碳排放量的比例均为,并预计年后碳排放量恰好减少为今年碳排放量的一半.(1)求的值;(2)若某一年的碳排放量为今年碳排放量的,按照计划至少再过多少年,碳排放量不超过今年碳排放量的?19.已知函数(1)若成立,求x的取值范围;(2)若定义在R上奇函数满足,且当时,,求在的解析式,并写出在的单调区间(不必证明)(3)对于(2)中的,若关于x的不等式在R上恒成立,求实数t的取值范围20.函数的定义域为,定义域为.(1)求;(2)若,求实数的取值范围.21.已知函数(且)的图象过点.(1)求函数的解析式;(2)解不等式.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】通过计算,判断出零点所在的区间.【详解】由于,,,故零点在区间,故选B.【点睛】本小题主要考查零点的存在性定理的应用,考查函数的零点问题,属于基础题.2、C【解析】由题设,又,则,所以,,应选答案C点睛:角变换是三角变换中的精髓,也是等价化归与转化数学思想的具体运用,求解本题的关键是巧妙地将一个角变为已知两角的差,再运用三角变换公式进行求解.3、C【解析】首先判断函数的奇偶性,即可排除AD,又,即可排除B.【详解】因为,定义域为R,关于原点对称,又,故函数为奇函数,图象关于原点对称,故排除AD;又,故排除B.故选:C.4、B【解析】先算,再求【详解】,故选:B5、C【解析】由指数式与对数式互化为相同形式后求解【详解】由题意得:,,,①,又,,,和是方程的根,由于方程的根唯一,,由①知,,故选:C6、D【解析】设点,根据点到两点距离相等,列出方程,即可求解.【详解】根据题意,可设点,因为点到两点的距离相等,可得,即,解得,所以整理得点的坐标为.故选:D.7、B【解析】利用基本不等式直接求解.【详解】,,又,当且仅当,即时等号成立,所以的最大值为故选:B8、D【解析】直接利用特殊值检验及其不等式的性质判断即可.【详解】对于选项A,令,,但,则A错误;对于选项B,令,,但,则B错误;对于选项C,当时,,则C错误;对于选项D,有不等式的可加性得,则D正确,故选:D.9、A【解析】根据函数的解析式求解即可.【详解】,所以,故选A10、C【解析】根据给定条件由含有一个量词的命题的否定方法直接写出p的否定判断作答.【详解】依题意,命题是存在量词命题,其否定是全称量词命题,所以命题的否定是:,.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】由集合定义,及交集补集定义即可求得.【详解】由Venn图及集合的运算可知,阴影部分表示的集合为∁又A={0,1,2,3,4,5},B={1,3,5,7,9},∴A∩B={1,3,5},∴即Venn图中阴影部分表示的集合中元素的个数为3故答案为:3.12、【解析】设,或为增函数,在为增函数,根据复合函数单调性“同增异减”可知:函数单调递增区间是.13、【解析】设,求得矩形面积的表达式,结合基本不等式求得最大值.【详解】设,,,,所以矩形的面积,当且仅当时等号成立.故选:14、【解析】求出圆心到直线的距离,进而可得结果.【详解】依题意可知圆心为,半径为1.则圆心到直线距离,则点直线的最大距离为.故答案:.15、【解析】设则得到,再利用奇函数的性质得到答案.【详解】设则,函数是定义在上的奇函数故答案为【点睛】本题考查了利用函数的奇偶性计算函数表达式,属于常考题型.16、【解析】∵函数的图象关于y轴对称,且其定义域为∴,即,且为偶函数∴,即∴∴函数在上单调递增∴,∴函数在上的值域为故答案为点睛:此题主要考查函数二次函数图象对称的性质以及二次函数的值域的求法,求解的关键是熟练掌握二次函数的性质,本题理解对称性很关键三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)2;(2)单调递增,证明见解析;(3).【解析】(1)利用奇函数定义直接计算作答.(2)求出a值,再利用函数单调性定义证明作答.(3)把给定不等式等价变形,再利用函数单调性求出最小值,列式计算作答.【小问1详解】因是定义域为的奇函数,则,而,解得,所以的值是2.【小问2详解】由(1)得,是定义域为的奇函数,而,则,即,又,解得,则函数在上单调递增,,,,因,则,,于是得,即,所以函数在定义域上单调递增.【小问3详解】当时,,,,而函数在上单调递增,,于是得,令,函数在上单调递减,当,即时,,因此,,解得,所以的范围是.【点睛】关键点睛:涉及不等式恒成立问题,将给定不等式等价转化,构造函数,利用函数思想是解决问题的关键.18、(1);(2)年.【解析】(1)设今年碳排放量为,则由题意得,从而可求出的值;(2)设再过年碳排放量不超过今年碳排放量的,则,再把代入解关于的不等式即可得答案【详解】解:设今年碳排放量为.(1)由题意得,所以,得.(2)设再过年碳排放量不超过今年碳排放量,则,将代入得,即,得.故至少再过年,碳排放量不超过今年碳排放量的.19、(1)(2),在和单调递减,在单调递增(3)【解析】(1)把题给不等式转化成对数不等式,解之即可;(2)利用题给条件分别去求和的函数解析式,再综合写成分段函数即可解决;(3)分类讨论把题给抽象不等式转化成整式不等式即可解决.【小问1详解】即可化为,解之得,不等式解集为【小问2详解】设,则,,故设,则,故在和单调递减,在单调递增;【小问3详解】由可知,有对称轴,.又由上可知在单调递增,在单调递减,记,当时,,又由恒成立,可得,即,解之得当时,,又由恒成立,可得,即,解之得综上可得实数t的取值范围为【点睛】分类讨论思想是高中数学一项重要的考查内容.分类讨论思想要求在不能用统一的方法解决问题的时候,将问题划分成不同的模块,通过分块来实现问题的求解,体现了对数学问题的分析处理能力和解决能力.20、(1);(2).【解析】(1)求函数的定义域,就是求使得根式有意义的自变量的取值范围,然后求解分式不等式即可;(2)因为,所以一定有,从而得到,要保证,由它们的端点值的大小列式进行计算,即可求得结果.【详解】(1)要使函数有意义,则需,即,解得或,所以;(2)由题意可知,因为,所以,由,可求得集合,若,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 证券行业2025年三季报总结:泛自营能力决定分化各项业务全面回暖
- 2025年南京市卫生健康委员会、南京市机关事务管理局部分事业单位公开招聘卫技人员备考题库及完整答案详解1套
- 2025贵州省重点产业人才“蓄水池”第四批岗位专项简化程序公开招聘32人笔试重点题库及答案解析
- 2025年福建海峡银行龙岩分行诚聘英才备考题库及答案详解参考
- 85%锅炉课程设计
- 2025中国科学院上海硅酸盐研究所压电陶瓷材料与器件课题组招聘博士后备考核心试题附答案解析
- 2025年中国光大银行光大理财社会招聘备考题库及完整答案详解1套
- 《CB 3525-1993船用液压压力控制阀基本参数和连接尺寸》专题研究报告解读
- 2025年乡村文化节五年品牌评估与文旅产业发展报告
- 中山市人民政府民众街道办事处2025年公开招聘合同制工作人员备考题库及1套完整答案详解
- 居间服务费合同(标准版)
- 消防爱装管装教育课件
- 脑梗死诊疗指南
- 幼儿园小班语言《老鼠阿姨的礼物》课件
- GB/T 31970-2025汽车气压制动钳总成性能要求及台架试验方法
- 设备工程师年终工作总结
- 《油气储存企业安全风险评估细则(2025年修订)》解读
- 四旋翼无人机飞行原理
- GB/T 45966.1-2025石油天然气工业井完整性第1部分:生命周期管理
- 鹏城实验室双聘管理办法
- 船舶设备故障预测模型及维护优化策略
评论
0/150
提交评论