2026届新疆哈密石油高中数学高一上期末教学质量检测模拟试题含解析_第1页
2026届新疆哈密石油高中数学高一上期末教学质量检测模拟试题含解析_第2页
2026届新疆哈密石油高中数学高一上期末教学质量检测模拟试题含解析_第3页
2026届新疆哈密石油高中数学高一上期末教学质量检测模拟试题含解析_第4页
2026届新疆哈密石油高中数学高一上期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届新疆哈密石油高中数学高一上期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.命题“”的否定为()A. B.C. D.2.不论为何实数,直线恒过定点()A. B.C. D.3.过原点和直线与的交点的直线的方程为()A. B.C. D.4.下列函数中,最小值是的是()A. B.C. D.5.设函数,A.3 B.6C.9 D.126.若,则下列不等式一定成立的是()A. B.C. D.7.计算器是如何计算,,,,等函数值的?计算器使用的是数值计算法,其中一种方法是用容易计算的多项式近似地表示这些函数,通过计算多项式的值求出原函数的值,如,,,其中.英国数学家泰勒(B.Taylor,1685-1731)发现了这些公式,可以看出,右边的项用得越多,计算得出的和的值也就越精确.运用上述思想,可得到的近似值为()A.0.50 B.0.52C.0.54 D.0.568.若,,则是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角9.已知集合,集合,则下列结论正确的是A. B.C. D.10.已知函数,则函数()A.有最小值 B.有最大值C有最大值 D.没有最值二、填空题:本大题共6小题,每小题5分,共30分。11.定义在上的偶函数满足,且在上是减函数,若、是钝角三角形的两个锐角,对(1),为奇数;(2);(3);(4);(5).则以上结论中正确的有______________.(填入所有正确结论的序号).12.已知,,,,则______.13.已知函数在上单调递减,则实数的取值范围是______.14.已知函数,则_________15.设是第三象限的角,则的终边在第_________象限.16.已知幂函数的定义域为,且单调递减,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,一个半径为4米的筒车按逆时针方向每分钟转1圈,筒车的轴心O距水面的高度为2米.设筒车上的某个盛水筒W到水面的距离为d(单位:米)(在水面下则d为负数).若以盛水筒W刚浮出水面时开始计算时间,则d与时间t(单位:分钟)之间的关系为.(1)求的值;(2)求盛水筒W出水后至少经过多少时间就可到达最高点?(3)某时刻(单位:分钟)时,盛水筒W在过O点的竖直直线的左侧,到水面的距离为5米,再经过分钟后,盛水筒W是否在水中?18.已知函数是定义域为的奇函数,当时,.(1)求出函数在上解析式;(2)若与有3个交点,求实数的取值范围.19.已知向量,,且.(1)的值;(2)若,,且,求的值20.已知函数.求函数的值域21.在三棱柱ABC-A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F分别是AC,B1C的中点(1)求证:EF∥平面AB1C1;(2)求证:平面AB1C⊥平面ABB1

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】“若,则”的否定为“且”【详解】根据命题的否定形式可得:原命题的否定为“”故选:C2、C【解析】将直线方程变形为,即可求得过定点坐标.【详解】根据题意,将直线方程变形为因为位任意实数,则,解得所以直线过的定点坐标为故选:C【点睛】本题考查了直线过定点的求法,属于基础题.3、C【解析】先求出两直线的交点,从而可得所求的直线方程.【详解】由可得,故过原点和交点的直线为即,故选:C.4、B【解析】应用特殊值及基本不等式依次判断各选项的最小值是否为即可.【详解】A:当,则,,所以,故A不符合;B:由基本不等式得:(当且仅当时取等号),符合;C:当时,,不符合;D:当取负数,,则,,所以,故D不符合;故选:B.5、C【解析】.故选C.6、B【解析】对于ACD,举例判断即可,对于B,利用不等式的性质判断【详解】解:对于A,令,,满足,但,故A错误,对于B,∵,∴,故B正确,对于C,当时,,故C错误,对于D,令,,满足,而,故D错误.故选:B.7、C【解析】根据新定义,直接计算取近似值即可.【详解】由题意,故选:C8、B【解析】根据,可判断可能在的象限,根据,可判断可能在的象限,综合分析,即可得答案.【详解】由,可得的终边在第一象限或第二象限或与y轴正半轴重合,由,可得的终边在第二象限或第四象限,因为,同时成立,所以是第二象限角.故选:B9、B【解析】由题意得,结合各选项知B正确.选B10、B【解析】换元法后用基本不等式进行求解.【详解】令,则,因为,,故,当且仅当,即时等号成立,故函数有最大值,由对勾函数的性质可得函数,即有最小值.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、(1)(4)(5)【解析】令,结合偶函数得到,根据题意推出函数的周期为,可得(1)正确;根据函数在上是减函数,结合周期性可得在上是增函数,利用、是钝角三角形的两个锐角,结合正弦函数、余弦函数的单调性可得,,再利用函数的单调性可得(4)(5)正确,当时,可得(2)(3)不正确.【详解】∵,令,得,又是偶函数,则,∴,且,可得函数是周期为2的函数.故,为奇数.故(1)正确;∵、是钝角三角形的两个锐角,∴,可得,∵在区间上是增函数,,∴,即钝角三角形的两个锐角、满足,由在区间上是减函数得,∵函数是周期为2的函数且在上是减函数,∴在上也是减函数,又函数是定义在上的偶函数,可得在上是增函数.∵钝角三角形的两个锐角、满足,,且,,∴,.故(4)(5)正确;当时,,,,,故(2)(3)不正确.故答案为:(1)(4)(5)【点睛】关键点点睛:利用函数的奇偶性和单调性求解是解题关键.12、【解析】利用两角和的正弦公式即可得结果.【详解】因为,,所以,由,,可得,,所以.故答案为:.13、【解析】根据分段函数的单调性,可知每段函数的单调性,以及分界点处的函数的的大小关系,即可列式求解.【详解】因为分段函数在上单调递减,所以每段都单调递减,即,并且在分界点处需满足,即,解得:.故答案为:14、【解析】运用代入法进行求解即可.【详解】,故答案为:15、二或四【解析】根据是第三象限角,得到,,再得到,,然后讨论的奇偶可得答案.【详解】因为是第三象限角,所以,,所以,,当为偶数时,为第二象限角,当为奇数时,为第四象限角.故答案为:二或四.16、【解析】根据幂函数的单调性,得到的范围,再由其定义域,根据,即可确定的值.【详解】因为幂函数的定义域为,且单调递减,所以,则,又,所以的所有可能取值为,,,当时,,其定义域为,不满足题意;当时,,其定义域为,满足题意;当时,,其定义域为,不满足题意;所以.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)分钟;(3)再经过分钟后盛水筒不在水中.【解析】(1)先结合题设条件得到,,求得,再利用初始值计算初相即可;(2)根据盛水筒达到最高点时,代入计算t值,再根据,得到最少时间即可;(3)先计算时,根据题意,利用同角三角函数的平方关系求,再由分钟后,进而计算d值并判断正负,即得结果.【详解】解:(1)由题意知,,即,所以,由题意半径为4米,筒车的轴心O距水面的高度为2米,可得:,当时,,代入得,,因为,所以;(2)由(1)知:,盛水筒达到最高点时,,当时,,所以,所以,解得,因为,所以,当时,,所以盛水筒出水后至少经过分钟就可达到最高点;(3)由题知:,即,由题意,盛水筒W在过O点的竖直直线的左侧,知,所以,所以,所以,再经过分钟后,所以再经过分钟后盛水筒不在水中.【点睛】本题的解题关键在于准确求解出三角函数模型的解析式,才能利用三角函数性质解决实际问题,突破难点.18、(1);(2).【解析】(1)利用函数的奇偶性求出函数的解析式即可(2)与图象交点有3个,画出图象观察,求得实数的取值范围【详解】(1)①由于函数是定义域为的奇函数,则;②当时,,因为是奇函数,所以.所以.综上:.(2)图象如下图所示:单调增区间:单调减区间:.因为方程有三个不同的解,由图象可知,,即19、(1);(2)【解析】(1)首先应用向量数量积坐标公式求得,结合,求得,得到结果;(2)结合题的条件,利用同角三角函数关系式求得,结合角的范围以及(1)的结论,求得,再应用余弦和角公式求得的值,结合角的范围求得,得到结果.【详解】(1)因为,,所以因为,所以,即.(2)因为,,所以.因为,,所以.因为,所以,所以.因为,,所以,所以.【点睛】该题考查的是有关三角恒等变换的问题,涉及到的知识点有向量数量积坐标公式,同角三角函数关系式,余弦的和角公式,利用角的三角函数值的大小,结合角的范围求角的大小,属于简单题目.20、【解析】将化为,分和分别应用均值不等式可得答案.【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论