【《超分子溶剂的形成研究文献综述》6100字(论文)】_第1页
【《超分子溶剂的形成研究文献综述》6100字(论文)】_第2页
【《超分子溶剂的形成研究文献综述》6100字(论文)】_第3页
【《超分子溶剂的形成研究文献综述》6100字(论文)】_第4页
【《超分子溶剂的形成研究文献综述》6100字(论文)】_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

超分子溶剂的形成研究文献综述目录TOC\o"1-3"\h\u29230超分子溶剂的形成研究文献综述 1227881.1超分子溶剂的形成过程 1162591.2超分子溶剂的诱导因素 41.1超分子溶剂的形成过程超分子溶剂是由两亲分子溶液通过连续自组装过程产生的。首先两亲分子在非共价相互作用下自发形成纳/微米聚集体,然后发生凝聚现象,产生分散在连续相(通常为水)中的小液滴,最后通过离心等手段使分散的液滴聚集,从而达到分相现象。具体的形成过程如图1.1所示ADDINEN.CITEADDINEN.CITE.DATA[\o"Melnyk,2014#178"8],首先,在临界聚集浓度(criticalaggregationconcentration,CAC)以上制备两亲分子的水性或有机胶体悬浮液。两亲分子自发形成三维纳米聚集体,主要包括胶束(3-6nm)、反相胶束(4-8nm)和囊泡(30-500nm),其具体形态取决于两亲物和溶剂性质。之后,通过凝聚诱导作用(例如pH、温度、无机盐、有机盐或溶剂)来改变聚集体悬浮液的环境条件,以增加聚集体的尺寸。聚集体的生长引起凝聚现象,从而自发形成超分子液滴。这些液滴的密度与原本溶液的密度不同,这使其聚集或沉淀为新的液相(即超分子溶剂相),也可以通过外部提供离心力加速分离。液滴密度小于原本溶液的密度,则超分子溶剂会产生在上相,反之则会在下相。超分子溶剂是一种富含胶体的液相,在纳米尺度和微米尺度范围内分布宽广,并与本体溶液相(两亲分子浓度在CAC以上)保持平衡。图1.1超分子溶剂的形成过程示意图ADDINEN.CITEADDINEN.CITE.DATA[\o"Melnyk,2014#178"8]Figure1.1SchematicdiagramofSUPRASformationprocess.两亲分子自组装成各种纳米结构聚集体是超分子溶剂形成中的第一步。达到临界聚集浓度时,两亲分子会自发缔合,最大程度地减少不利的疏溶剂性。在能量方面,两亲分子之间产生相互作用是有利于稳定的ADDINEN.CITE<EndNote><Cite><Author>Ballesteros-Gómez</Author><Year>2010</Year><RecNum>151</RecNum><DisplayText>[9]</DisplayText><record><rec-number>151</rec-number><foreign-keys><keyapp="EN"db-id="f02aarrpvad9f9eve0m5d2zrvsz0d552vwtz">151</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Ballesteros-Gómez,A.</author><author>Sicilia,M.D.</author><author>Rubio,S.</author></authors></contributors><auth-address>DepartmentofAnalyticalChemistry,FacultaddeCiencias,EdificioAnexoMarieCurie,CampusdeRabanales,14071Cordoba,Spain.</auth-address><titles><title>Supramolecularsolventsintheextractionoforganiccompounds.Areview</title><secondary-title>AnalyticaChimicaActa</secondary-title><alt-title>Analyticachimicaacta</alt-title></titles><periodical><full-title>AnalyticaChimicaActa</full-title></periodical><alt-periodical><full-title>AnalyticaChimicaActa</full-title></alt-periodical><pages>108-30</pages><volume>677</volume><number>2</number><dates><year>2010</year><pub-dates><date>Sep16</date></pub-dates></dates><isbn>1873-4324(Electronic) 0003-2670(Linking)</isbn><accession-num>20837178</accession-num><urls><related-urls><url>/pubmed/20837178</url></related-urls></urls><electronic-resource-num>10.1016/j.aca.2010.07.027</electronic-resource-num></record></Cite></EndNote>[\o"Ballesteros-Gómez,2010#151"9]。因此,自组装聚集体的结构源于溶质-溶剂和溶质-溶质间微妙的相互作用。聚集体的形态取决于两亲分子头基和烷基链的相对大小,可以通过Irsaelacvili提出的堆积参数(P)理论进行预测ADDINEN.CITE<EndNote><Cite><Author>N.</Author><Year>1976</Year><RecNum>400</RecNum><DisplayText>[10]</DisplayText><record><rec-number>400</rec-number><foreign-keys><keyapp="EN"db-id="f02aarrpvad9f9eve0m5d2zrvsz0d552vwtz">400</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Israelachvili,J.N.</author><author>Mitchell,D.J.</author><author>Ninham,B.W.</author></authors></contributors><titles><title>Theoryofself-assemblyofhydrocarbonamphiphilesintomicellesandbilayers</title><secondary-title>JournaloftheChemicalSocietyFaradayTransactions</secondary-title></titles><periodical><full-title>JournaloftheChemicalSocietyFaradayTransactions</full-title></periodical><pages>1525-1568</pages><volume>72</volume><dates><year>1976</year></dates><urls></urls></record></Cite></EndNote>[\o"Israelachvili,1976#400"10]。P其中,P代表堆积参数,V代表烷基链所占的空间体积,a0代表聚集体中两亲分子头基的平均横截面积,lc代表聚集体中烷烃链的最大伸展长度(如图1.2)。参数P取决于两亲分子的分子几何形状,例如烷基链的碳原子个数和链饱和度(存在烯基或炔基),极性头基的大小和所带电荷。除此之外,溶液条件的影响,包括离子强度、pH、温度、辅助表面活性剂浓度和添加剂都会间接影响V、a0和lc值。如图1.2所示,一般来说,P<1/3时,形成球状胶束或不连续的立方相;1/3<P<1/2时,形成椭球形、棒状或蠕虫状胶束;1/2<P<1时,溶液形成囊泡或具有不同曲率的双分子层结构;P~1时,几乎无曲率,形成碟状胶束或双分子层状结构;P>1时,会形成反向胶束结构。两亲分子的聚集是一个起止过程,添加更多的两亲分子会导致形成更多相同的聚集体,而对于大多数典型的两亲物,终止过程源自头基-头基团之间的相互排斥作用。图1.2两亲分子堆积参数理论的超分子聚集体的结构ADDINEN.CITE<EndNote><Cite><Author>Ballesteros-Gómez</Author><Year>2010</Year><RecNum>151</RecNum><DisplayText>[9]</DisplayText><record><rec-number>151</rec-number><foreign-keys><keyapp="EN"db-id="f02aarrpvad9f9eve0m5d2zrvsz0d552vwtz">151</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Ballesteros-Gómez,A.</author><author>Sicilia,M.D.</author><author>Rubio,S.</author></authors></contributors><auth-address>DepartmentofAnalyticalChemistry,FacultaddeCiencias,EdificioAnexoMarieCurie,CampusdeRabanales,14071Cordoba,Spain.</auth-address><titles><title>Supramolecularsolventsintheextractionoforganiccompounds.Areview</title><secondary-title>AnalyticaChimicaActa</secondary-title><alt-title>Analyticachimicaacta</alt-title></titles><periodical><full-title>AnalyticaChimicaActa</full-title></periodical><alt-periodical><full-title>AnalyticaChimicaActa</full-title></alt-periodical><pages>108-30</pages><volume>677</volume><number>2</number><dates><year>2010</year><pub-dates><date>Sep16</date></pub-dates></dates><isbn>1873-4324(Electronic) 0003-2670(Linking)</isbn><accession-num>20837178</accession-num><urls><related-urls><url>/pubmed/20837178</url></related-urls></urls><electronic-resource-num>10.1016/j.aca.2010.07.027</electronic-resource-num></record></Cite></EndNote>[\o"Ballesteros-Gómez,2010#151"9]Figure1.2Schematicstructureofsupramolecularaggregatesaccordingtothepackingfactorofamphiphiles.改变悬浮液环境,导致聚集体尺寸的增加,是超分子溶剂形成的第二个重要步骤。在此步骤中,悬浮液中聚集体(胶束或囊泡等)体积增长,需要减少在第一个自组装过程中停止聚集的头部-头部之间的排斥力,而如何实现此目标取决于不同的两亲分子特性。在离子体系中,中和电荷数可以促进聚集体的生长,通过添加具有较小头基的辅助表面活性剂,电解质或两亲性抗衡离子,以及通过改变pH来实现ADDINEN.CITE<EndNote><Cite><Author>H.Yin</Author><Year>2002</Year><RecNum>404</RecNum><DisplayText>[11,12]</DisplayText><record><rec-number>404</rec-number><foreign-keys><keyapp="EN"db-id="f02aarrpvad9f9eve0m5d2zrvsz0d552vwtz">404</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>H.Yin,</author><author>M.Mao,</author><author>J.Huang,</author><author>H.Fu,</author></authors></contributors><titles><title>Two-phaseregionintheDTAB/SLmixedsurfactantsystem</title><secondary-title>Langmuir</secondary-title></titles><periodical><full-title>Langmuir</full-title></periodical><pages>9198-9203</pages><volume>18</volume><dates><year>2002</year></dates><urls></urls></record></Cite><Cite><Author>Casero</Author><Year>1999</Year><RecNum>155</RecNum><record><rec-number>155</rec-number><foreign-keys><keyapp="EN"db-id="f02aarrpvad9f9eve0m5d2zrvsz0d552vwtz">155</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>I.Casero</author><author>D.Sicilia</author><author>S.Rubio</author><author>D.Pérez-Bendito</author></authors></contributors><titles><title>Anacid-inducedphasecloudpointseparationapproachusinganionicsurfactantsfortheextractionandpreconcentrationoforganiccompounds</title><secondary-title>AnalyticalChemistry</secondary-title></titles><periodical><full-title>AnalyticalChemistry</full-title></periodical><pages>4519-4526</pages><volume>71</volume><dates><year>1999</year></dates><urls></urls></record></Cite></EndNote>[\o"H.Yin,2002#404"11,\o"Casero,1999#155"12]。在非离子体系中,促进聚集体生长的一种非常有效的方法是减少可用于溶剂化的溶剂分子的数量,这可以通过改变温度或通过添加不良溶剂来实现ADDINEN.CITE<EndNote><Cite><Author>Hinze</Author><Year>1993</Year><RecNum>156</RecNum><DisplayText>[13,14]</DisplayText><record><rec-number>156</rec-number><foreign-keys><keyapp="EN"db-id="f02aarrpvad9f9eve0m5d2zrvsz0d552vwtz">156</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Hinze,W.L.</author><author>Pramauro,E.</author></authors></contributors><titles><title>Acriticalreviewofsurfactant-mediatedphaseseparations(cloud-pointextractions):theoryandapplications</title><secondary-title>CriticalReviewsinAnalyticalChemistry</secondary-title></titles><periodical><full-title>CriticalReviewsinAnalyticalChemistry</full-title></periodical><pages>133-177</pages><volume>24</volume><number>2</number><dates><year>1993</year></dates><isbn>1040-8347 1547-6510</isbn><urls></urls><electronic-resource-num>10.1080/10408349308048821</electronic-resource-num></record></Cite><Cite><Author>Ruiz</Author><Year>2007</Year><RecNum>187</RecNum><record><rec-number>187</rec-number><foreign-keys><keyapp="EN"db-id="f02aarrpvad9f9eve0m5d2zrvsz0d552vwtz">187</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Ruiz,F.</author><author>Rubio,S.</author><author>Pérez-Bendito,D.</author></authors></contributors><titles><title>Water-inducedcoacervationofalkylcarboxylicacidreversemicelles:phenomenondescriptionandpotentialfortheextractionoforganiccompounds</title><secondary-title>AnalyticalChemistry</secondary-title></titles><periodical><full-title>AnalyticalChemistry</full-title></periodical><pages>7473-7484</pages><volume>79</volume><dates><year>2007</year></dates><urls></urls></record></Cite></EndNote>[\o"Hinze,1993#156"13,\o"Ruiz,2007#187"14]。1.2超分子溶剂的诱导因素(1)温度超分子溶剂的相行为对温度非常敏感。与其他方法相比,温度变化方便调控,且便于观察和研究聚集体各个阶段的转变。动力学方面也可以通过控制加热和冷却速率来检测。温度对于基于非离子型表面活性剂的超分子溶剂体系相行为有很大的影响。当表面活性剂溶液浓度大于临界胶束浓度时,体系温度升高且高于浊点时,胶束聚集体中表面活性剂与水分子间的氢键作用被破坏,水分子从胶束中逃逸,胶束发生脱水现象,从而在水中的溶解度降低,此时溶液会产生浑浊现象。进一步升高温度,浑浊溶液可发生相分离,生成澄清透明的液-液两相,即胶体富集的超分子溶剂相和胶体含量少的水相(如图1.3所示)ADDINEN.CITE<EndNote><Cite><Author>Ojeda</Author><Year>2009</Year><RecNum>160</RecNum><DisplayText>[15]</DisplayText><record><rec-number>160</rec-number><foreign-keys><keyapp="EN"db-id="f02aarrpvad9f9eve0m5d2zrvsz0d552vwtz">160</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Ojeda,C.B.</author><author>Rojas,F.S.</author></authors></contributors><titles><title>Separationandpreconcentrationbyacloudpointextractionprocedurefordeterminationofmetals:anoverview</title><secondary-title>AnalyticalandBioanalyticalChemistry</secondary-title></titles><periodical><full-title>AnalyticalandBioanalyticalChemistry</full-title></periodical><pages>759-782</pages><volume>394</volume><number>3</number><dates><year>2009</year></dates><isbn>1618-2642 1618-2650</isbn><urls></urls><electronic-resource-num>10.1007/s00216-009-2660-9</electronic-resource-num></record></Cite></EndNote>[\o"Ojeda,2009#160"15]。例如常见的Triton系列(聚氧乙烯叔辛基苯基醚)或PONPE系列(聚氧乙烯壬基苯醚)表面活性剂溶液在浊点温度以上,非离子胶束相出现分相情况ADDINEN.CITE<EndNote><Cite><Author>Hinze</Author><Year>1993</Year><RecNum>156</RecNum><DisplayText>[13]</DisplayText><record><rec-number>156</rec-number><foreign-keys><keyapp="EN"db-id="f02aarrpvad9f9eve0m5d2zrvsz0d552vwtz">156</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Hinze,W.L.</author><author>Pramauro,E.</author></authors></contributors><titles><title>Acriticalreviewofsurfactant-mediatedphaseseparations(cloud-pointextractions):theoryandapplications</title><secondary-title>CriticalReviewsinAnalyticalChemistry</secondary-title></titles><periodical><full-title>CriticalReviewsinAnalyticalChemistry</full-title></periodical><pages>133-177</pages><volume>24</volume><number>2</number><dates><year>1993</year></dates><isbn>1040-8347 1547-6510</isbn><urls></urls><electronic-resource-num>10.1080/10408349308048821</electronic-resource-num></record></Cite></EndNote>[\o"Hinze,1993#156"13]。图1.3温度升高引发非离子型表面活性剂溶液分相的示意图ADDINEN.CITE<EndNote><Cite><Author>Ojeda</Author><Year>2009</Year><RecNum>160</RecNum><DisplayText>[15]</DisplayText><record><rec-number>160</rec-number><foreign-keys><keyapp="EN"db-id="f02aarrpvad9f9eve0m5d2zrvsz0d552vwtz">160</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Ojeda,C.B.</author><author>Rojas,F.S.</author></authors></contributors><titles><title>Separationandpreconcentrationbyacloudpointextractionprocedurefordeterminationofmetals:anoverview</title><secondary-title>AnalyticalandBioanalyticalChemistry</secondary-title></titles><periodical><full-title>AnalyticalandBioanalyticalChemistry</full-title></periodical><pages>759-782</pages><volume>394</volume><number>3</number><dates><year>2009</year></dates><isbn>1618-2642 1618-2650</isbn><urls></urls><electronic-resource-num>10.1007/s00216-009-2660-9</electronic-resource-num></record></Cite></EndNote>[\o"Ojeda,2009#160"15]Figure1.3Schematicdiagramofphaseseparationofnon-ionicsurfactantsolutioncausedbytemperatureincrease.对于阴阳离子表面活性剂复配超分子溶剂体系,温度的影响则更为复杂。通常情况下,温度升高,聚集体尺寸会减小。在大多数囊泡体系中,温度升高伴随着囊泡到胶束的相转变ADDINEN.CITE<EndNote><Cite><Author>Yin</Author><Year>2005</Year><RecNum>402</RecNum><DisplayText>[16,17]</DisplayText><record><rec-number>402</rec-number><foreign-keys><keyapp="EN"db-id="f02aarrpvad9f9eve0m5d2zrvsz0d552vwtz">402</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>H.Yin</author><author>J.Huang</author><author>Y.Lin</author><author>Y.Zhang</author><author>S.Qiu</author><author>J.Ye</author></authors></contributors><titles><title>Heating-inducedmicelletovesicletransitioninthecationic-anionicsurfactantsystems:comprehensivestudyandunderstanding</title><secondary-title>JournalofPhysicalChemistryB</secondary-title></titles><periodical><full-title>JournalofPhysicalChemistryB</full-title><abbr-1>JournalofPhysicalChemistryB</abbr-1></periodical><pages>4104-4110</pages><volume>109</volume><dates><year>2005</year></dates><urls></urls></record></Cite><Cite><Author>Buwalda</Author><Year>2000</Year><RecNum>403</RecNum><record><rec-number>403</rec-number><foreign-keys><keyapp="EN"db-id="f02aarrpvad9f9eve0m5d2zrvsz0d552vwtz">403</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Buwalda,R.T.</author><author>Stuart,M.C.A.</author><author>Engberts,J.B.F.N.</author></authors></contributors><titles><title>Wormlikemicellarandvesicularphasesinaqueoussolutionsofsingle-tailedsurfactantswitharomaticcounterions</title><secondary-title>Langmuir</secondary-title></titles><periodical><full-title>Langmuir</full-title></periodical><pages>6780-6786</pages><volume>16</volume><dates><year>2000</year></dates><urls></urls></record></Cite></EndNote>[\o"Yin,2005#402"16,\o"Buwalda,2000#403"17]。例如在十二烷基三甲基溴化铵(dodecyltrimethylammoniumbromide,DTAB)/月桂酸钠(sodiumlaurate,SL)体系中,可观察到随着温度的增加,胶体富集相的体积逐渐增加,最后两相之间的界面在一定温度下消失。用动态光散射追踪温度影响时,发现聚集体的结构以及它们之间的相互作用随着温度的升高而变化。温度由21oC上升到30-40oC,小聚集体的平均粒径不变,而大粒径聚集体(囊泡)的含量则急剧下降。当温度达到50oC时,较大的聚集体平均直径仅为47.6nmADDINEN.CITE<EndNote><Cite><Author>H.Yin</Author><Year>2002</Year><RecNum>404</RecNum><DisplayText>[11]</DisplayText><record><rec-number>404</rec-number><foreign-keys><keyapp="EN"db-id="f02aarrpvad9f9eve0m5d2zrvsz0d552vwtz">404</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>H.Yin,</author><author>M.Mao,</author><author>J.Huang,</author><author>H.Fu,</author></authors></contributors><titles><title>Two-phaseregionintheDTAB/SLmixedsurfactantsystem</title><secondary-title>Langmuir</secondary-title></titles><periodical><full-title>Langmuir</full-title></periodical><pages>9198-9203</pages><volume>18</volume><dates><year>2002</year></dates><urls></urls></record></Cite></EndNote>[\o"H.Yin,2002#404"11]。引起这一现象有两个可能的原因,一是聚集体缩小,二是在温度升高时聚集体的聚集程度减少。近年来,也在阴阳离子表面活性剂复配体系中,观察到温度诱导的胶束向囊泡相转换现象。加热后脂质囊泡中表面活性剂的溶解能力下降被认为是相转变的原因。例如在制备十二烷基硫酸钠(sodiumdodecylsulfate,SDS)/十二烷基三乙基溴化铵(dodecyltriethylammoniumbromide,DTEAB)混合的阴阳离子表面活性剂体系(摩尔比为2:1,表面活性剂总浓度为10mM)中,当温度从30oC升高到50oC,浊度检查可以观察到明显的浑浊度增加,粒径测量也表明聚集体由胶束向囊泡的转变。然而此体系的升温过程未能观察到如非离子表面活性剂所展现出来的相分离或是沉淀ADDINEN.CITE<EndNote><Cite><Author>Yin</Author><Year>2003</Year><RecNum>405</RecNum><DisplayText>[18]</DisplayText><record><rec-number>405</rec-number><foreign-keys><keyapp="EN"db-id="f02aarrpvad9f9eve0m5d2zrvsz0d552vwtz">405</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Yin,H.</author><author>Zhou,Z.</author><author>Huang,J.</author><author>Zheng,R.</author><author>Zhang,Y.</author></authors></contributors><titles><title>Temperature-inducedmicelletovesicletransitioninthesodiumdodecylsulfate/dodecyltriethylammoniumbromidesystem</title><secondary-title>AngewandteChemieInternationalEdition</secondary-title></titles><periodical><full-title>AngewandteChemieInternationalEdition</full-title></periodical><pages>2188-2191</pages><volume>42</volume><number>19</number><dates><year>2003</year></dates><isbn>14337851 15213773</isbn><urls></urls><electronic-resource-num>10.1002/anie.200350913</electronic-resource-num></record></Cite></EndNote>[\o"Yin,2003#405"18]。在分子相互作用较强、胶束聚集数较大的阴阳离子表面活性剂体系中,热致胶束向囊泡相转变现象更容易发生ADDINEN.CITE<EndNote><Cite><Author>Yin</Author><Year>2005</Year><RecNum>402</RecNum><DisplayText>[16]</DisplayText><record><rec-number>402</rec-number><foreign-keys><keyapp="EN"db-id="f02aarrpvad9f9eve0m5d2zrvsz0d552vwtz">402</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>H.Yin</author><author>J.Huang</author><author>Y.Lin</author><author>Y.Zhang</author><author>S.Qiu</author><author>J.Ye</author></authors></contributors><titles><title>Heating-inducedmicelletovesicletransitioninthecationic-anionicsurfactantsystems:comprehensivestudyandunderstanding</title><secondary-title>JournalofPhysicalChemistryB</secondary-title></titles><periodical><full-title>JournalofPhysicalChemistryB</full-title><abbr-1>JournalofPhysicalChemistryB</abbr-1></periodical><pages>4104-4110</pages><volume>109</volume><dates><year>2005</year></dates><urls></urls></record></Cite></EndNote>[\o"Yin,2005#402"16]。(2)pH研究表明pH值对于基于离子型表面活性剂的超分子溶剂形成有显著影响。图1.4显示了室温下盐酸浓度与阴离子表面活性剂浓度,包括十二烷基硫酸钠(SDS)、十二烷基苯磺酸钠(sodiumdodecylbenzenesulphonate,SDBSA)、十二烷磺酸钠(sodiumdodecylsulfonate,SDSA)和二辛基磺基琥珀酸钠(AerosolOT)的相图。可观察到三个不同的区域,即均匀的液体区域(L),两个共存的各向同性相(L-L)和固体区域(S)。在所有测试的阴离子表面活性剂中均观察到酸诱导的液-液相分离,因此,推测酸诱导相分离是这类表面活性剂的一般性质ADDINEN.CITE<EndNote><Cite><Author>Casero</Author><Year>1999</Year><RecNum>155</RecNum><DisplayText>[12]</DisplayText><record><rec-number>155</rec-number><foreign-keys><keyapp="EN"db-id="f02aarrpvad9f9eve0m5d2zrvsz0d552vwtz">155</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>I.Casero</author><author>D.Sicilia</author><author>S.Rubio</author><author>D.Pérez-Bendito</author></authors></contributors><titles><title>Anacid-inducedphasecloudpointseparationapproachusinganionicsurfactantsfortheextractionandpreconcentrationoforganiccompounds</title><secondary-title>AnalyticalChemistry</secondary-title></titles><periodical><full-title>AnalyticalChemistry</full-title></periodical><pages>4519-4526</pages><volume>71</volume><dates><year>1999</year></dates><urls></urls></record></Cite></EndNote>[\o"Casero,1999#155"12]。考虑到表面活性剂在酸性介质中可能会逐渐氧化,需避免使用硝酸或高氯酸等强氧化性酸,因而盐酸被认为是获得两相分离的最合适的介质。在获得两个各向同性相的盐酸浓度下,阴离子表面活性剂中的硫酸根和磺酸根均应质子化,说明酸性介质会将阴离子表面活性剂转化为非离子表面活性剂。尤其对于基于烷酸的超分子溶剂体系,通常需要将溶液pH值调节至酸性环境,使部分烷酸维持电中性,在氢键作用力下生成超分子溶剂。例如,在pH为4.5的30mL水样中加入0.2g癸酸可获得超分子溶剂ADDINEN.CITE<EndNote><Cite><Author>Safari</Author><Year>2015</Year><RecNum>279</RecNum><DisplayText>[19]</DisplayText><record><rec-number>279</rec-number><foreign-keys><keyapp="EN"db-id="f02aarrpvad9f9eve0m5d2zrvsz0d552vwtz">279</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Safari,M.</author><author>Yamini,Y.</author><author>Tahmasebi,E.</author><author>Ebrahimpour,B.</author></authors></contributors><titles><title>MagneticnanoparticleassistedsupramolecularsolventextractionoftriazineherbicidespriortotheirdeterminationbyHPLCwithUVdetection</title><secondary-title>MicrochimicaActa</secondary-title></titles><periodical><full-title>MicrochimicaActa</full-title></periodical><pages>203-210</pages><volume>183</volume><number>1</number><dates><year>2015</year></dates><isbn>0026-3672 1436-5073</isbn><urls></urls><electronic-resource-num>10.1007/s00604-015-1607-4</electronic-resource-num></record></Cite></EndNote>[\o"Safari,2015#279"19]。又如,四氢呋喃(tetrahydrofuran,THF)或六氟异丙醇(hexafluoroisopropanol,HFIP)介导的烷酸体系均需要在酸性条件下形成ADDINEN.CITEADDINEN.CITE.DATA[\o"Ruiz,2007#187"14,\o"Zong,2018#19"20]。进一步研究酸诱导阴离子表面活性剂的相分离行为发现,烷基磺酸盐的临界盐酸浓度(发生两相分离所需的最低酸浓度)随着阴离子表面活性剂的烷基链长度从10到14的增加而增加ADDINEN.CITE<EndNote><Cite><Author>Sicilia</Author><Year>2002</Year><RecNum>406</RecNum><DisplayText>[21]</DisplayText><record><rec-number>406</rec-number><foreign-keys><keyapp="EN"db-id="f02aarrpvad9f9eve0m5d2zrvsz0d552vwtz">406</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Sicilia,D.</author><author>Rubio,S.</author><author>Pérez-Bendito,D.</author></authors></contributors><titles><title>Evaluationofthefactorsaffectingextractionoforganiccompoundsbasedontheacid-inducedphasecloudpointapproach</title><secondary-title>AnalyticaChimicaActa</secondary-title></titles><periodical><full-title>AnalyticaChimicaActa</full-title></periodical><pages>13-22</pages><volume>460</volume><dates><year>2002</year></dates><urls></urls></record></Cite></EndNote>[\o"Sicilia,2002#406"21]。图1.4在室温下盐酸-阴离子表面活性剂溶液相图ADDINEN.CITE<EndNote><Cite><Author>Casero</Author><Year>1999</Year><RecNum>155</RecNum><DisplayText>[12]</DisplayText><record><rec-number>155</rec-number><foreign-keys><keyapp="EN"db-id="f02aarrpvad9f9eve0m5d2zrvsz0d552vwtz">155</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>I.Casero</author><author>D.Sicilia</author><author>S.Rubio</author><author>D.Pérez-Bendito</author></authors></contributors><titles><title>Anacid-inducedphasecloudpointseparationapproachusinganionicsurfactantsfortheextractionandpreconcentrationoforganiccompounds</title><secondary-title>AnalyticalChemistry</secondary-title></titles><periodical><full-title>AnalyticalChemistry</full-title></periodical><pages>4519-4526</pages><volume>71</volume><dates><year>1999</year></dates><urls></urls></record></Cite></EndNote>[\o"Casero,1999#155"12]Figure1.4Phasediagramofhydrochloricacid-anionicsurfactantsolutionatroomtemperature.阴阳离子表面活性剂体系中的分子自组装主要归因于带相反电荷的头基之间的强静电吸引力,这极大地促进了聚集体中表面活性剂分子的致密堆积。pH值的改变,能改变离子表面活性剂头基的电荷量,而电荷量的变化对阴离子-阳离子表面活性剂之间的静电作用力有显著影响,从而会改变聚集体的类型。例如具有pH响应的单链阴离子表面活性剂正癸基磷酸(decylphosphonicacid,DPA),其具有两个pKa值2.67和7.04,可以通过调节pH值使得正癸基磷酸带一个或两个负电荷(如图1.5所示)。随着pH值的变化,DPA的中和度从2.0变为1.0,在表面活性剂摩尔比相同时,十六烷基三甲基溴化铵(CTAB)和DPA的混合物可以从“1-2”表面活性剂对变为“1-1”表面活性剂对。在“1-1”表面活性剂对体系中形成体积更大的聚集体(如囊泡,层状结构等),而在“1-2”表面活性剂对中仅观察到小聚集体(如球形胶束或蠕虫状胶束等)ADDINEN.CITE<EndNote><Cite><Author>Y.Lin</Author><Year>2008</Year><RecNum>407</RecNum><DisplayText>[22]</DisplayText><record><rec-number>407</rec-number><foreign-keys><keyapp="EN"db-id="f02aarrpvad9f9eve0m5d2zrvsz0d552vwtz">407</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Y.Lin,</author><author>X.Han,</author><author>X.Cheng,</author><author>J.Huang,</author><author>D.Liang,</author><author>C.Yu</author></authors></contributors><titles><title><styleface="normal"font="default"size="100%">pH-regulatedmolecularself-assembliesinacationic#anionicsurfactantsystem:froma</style><styleface="normal"font="default"charset="134"size="100%">“1#2”</style><styleface="normal"font="default"size="100%">s</style><styleface="normal"font="default"charset="134"size="100%">urfactant</style><styleface="normal"font="default"size="100%">p</style><styleface="normal"font="default"charset="134"size="100%">airtoa“1#1”</style><styleface="normal"font="default"size="100%">s</style><styleface="normal"font="default"charset="134"size="100%">urfactant</style><styleface="normal"font="default"size="100%">p</style><styleface="normal"font="default"charset="134"size="100%">air</style></title><secondary-title>Langmuir</secondary-title></titles><periodical><full-title>Langmuir</full-title></periodical><pages>13918-13924</pages><volume>24</volume><dates><year>2008</year></dates><urls></urls></record></Cite></EndNote>[\o"Y.Lin,2008#407"22]。图1.5pH值对阴阳离子表面活性剂聚集体结构的影响ADDINEN.CITE<EndNote><Cite><Author>Y.Lin</Author><Year>2008</Year><RecNum>407</RecNum><DisplayText>[22]</DisplayText><record><rec-number>407</rec-number><foreign-keys><keyapp="EN"db-id="f02aarrpvad9f9eve0m5d2zrvsz0d552vwtz">407</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Y.Lin,</author><author>X.Han,</author><author>X.Cheng,</author><author>J.Huang,</author><author>D.Liang,</author><author>C.Yu</author></authors></contributors><titles><title><styleface="normal"font="default"size="100%">pH-regulatedmolecularself-assembliesinacationic#anionicsurfactantsystem:froma</style><styleface="normal"font="default"charset="134"size="100%">“1#2”</style><styleface="normal"font="default"size="100%">s</style><styleface="normal"font="default"charset="134"size="100%">urfactant</style><styleface="normal"font="default"size="100%">p</style><styleface="normal"font="default"charset="134"size="100%">airtoa“1#1”</style><styleface="normal"font="default"size="100%">s</style><styleface="normal"font="default"charset="134"size="100%">urfactant</style><styleface="normal"font="default"size="100%">p</style><styleface="normal"font="default"charset="134"size="100%">air</style></title><secondary-title>Langmuir</secondary-title></titles><periodical><full-title>Langmuir</full-title></periodical><pages>13918-13924</pages><volume>24</volume><dates><year>2008</year></dates><urls></urls></record></Cite></EndNote>[\o"Y.Lin,2008#407"22]Figure1.5TheeffectofpHontheaggregatestructuresofanionicandcationicsurfactants.(3)无机盐对于大多数非离子表面活性剂而言,盐的存在可促进相分离,因为它们会增加水相的密度。盐的添加也可以降低非离子表面活性剂的浊点温度,使用的电解质浓度通常很高(超过0.1M),可以用所谓的盐溶和盐析作用(salting-inandsalting-outeffects)来解释这一现象ADDINEN.CITE<EndNote><Cite><Author>Wang</Author><Year>2006</Year><RecNum>408</RecNum><DisplayText>[23]</DisplayText><record><rec-number>408</rec-number><foreign-keys><keyapp="EN"db-id="f02aarrpvad9f9eve0m5d2zrvsz0d552vwtz">408</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contrib

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论