版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省长春市一五一中2026届数学高一上期末检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,下列结论中错误的是()A.的图像关于中心对称B.在上单调递减C.的图像关于对称D.的最大值为32.已知函数与的图象关于轴对称,当函数和在区间同时递增或同时递减时,把区间叫做函数的“不动区间”.若区间为函数的“不动区间”,则实数的取值范围是A. B.C. D.3.已知是自然对数的底数,函数的零点为,函数的零点为,则下列不等式中成立的是A. B.C. D.4.设,,,则,,三者的大小关系是()A. B.C. D.5.已知α,β是两个不同的平面,m,n是两条不同的直线,给出下列命题:①若m∥α,m∥β,则α∥β②若m⊂α,n⊂α,m∥β,n∥β,则α∥β;③m⊂α,n⊂β,m、n是异面直线,那么n与α相交;④若α∩β=m,n∥m,且n⊄α,n⊄β,则n∥α且n∥β其中正确的命题是()A.①② B.②③C.③④ D.④6.下列函数中,既是奇函数,又是增函数的是()①;②;③;④A.①② B.①④C.②③ D.③④7.下列函数是奇函数且在定义域内是增函数的是()A. B.C. D.8.下列说法正确的是A.棱柱被平面分成的两部分可以都是棱柱 B.底面是矩形的平行六面体是长方体C.棱柱的底面一定是平行四边形 D.棱锥的底面一定是三角形9.下列四个函数中,在其定义域上既是奇函数又是单调递增函数的是A. B.C. D.10.在下列区间中函数的零点所在的区间为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的最小值为________12.若f(x)为偶函数,且当x≤0时,,则不等式>的解集______.13.如果在实数运算中定义新运算“”:当时,;当时,.那么函数的零点个数为______14.函数的定义域为__________15.当时,的最小值为______16.如果直线与直线互相垂直,则实数__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,.(1)求;(2)若角的终边上有一点,求.18.如图,在三棱锥P-ABC中,PA⊥AB,PA⊥AC,AB⊥BC,,D为线段AC的中点,E为线段PC上一点.(1)求证:平面BDE⊥平面PAC;(2)求二面角P-BC-A的平面角的大小.19.已知角的顶点与原点重合,始边与轴的非负半轴重合,它的终边在直线上.(1)求的值;(2)求值20.如图所示,在中,,,与相交于点.(1)用,表示,;(2)若,证明:,,三点共线.21.已知函数(1)求函数的最小正周期、单调区间;(2)求函数在区间上的最小值和最大值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据三角函数的性质,依次整体代入检验即可得答案.【详解】解:对于A选项,当时,,所以是的对称中心,故A选项正确;对于B选项,当时,,此时函数在区间上不单调,故B选项错误;对于C选项,当时,,所以的图像关于对称,故C选项正确;对于D选项,的最大值为,故D选项正确.故选:B2、C【解析】若区间[1,2]为函数f(x)=|2x﹣t|的“不动区间”,则函数f(x)=|2x﹣t|和函数F(x)=|﹣t|在[1,2]上单调性相同,则(2x﹣t)(2﹣x﹣t)≤0在[1,2]上恒成立,进而得到答案【详解】∵函数y=f(x)与y=F(x)的图象关于y轴对称,∴F(x)=f(﹣x)=|2﹣x﹣t|,∵区间[1,2]为函数f(x)=|2x﹣t|的“不动区间”,∴函数f(x)=|2x﹣t|和函数F(x)=|2﹣x﹣t|在[1,2]上单调性相同,∵y=2x﹣t和函数y=2﹣x﹣t的单调性相反,∴(2x﹣t)(2﹣x﹣t)≤0在[1,2]上恒成立,即1﹣t(2x+2﹣x)+t2≤0在[1,2]上恒成立,即2﹣x≤t≤2x在[1,2]上恒成立,即≤t≤2,故答案为:C【点睛】(1)本题主要考查不动点定义及利用定义解答数学问题的能力,考查指数函数的图像和性质,考查不等式的恒成立问题,意在考查学生对这些知识的掌握水平和分析推理能力.(2)正确理解不动区间的定义,得到(2x﹣t)(2﹣x﹣t)≤0在[1,2]上恒成立,是解答的关键3、A【解析】解:由f(x)=ex+x﹣2=0得ex=2﹣x,由g(x)=lnx+x﹣2=0得lnx=2﹣x,作出函数y=ex,y=lnx,y=2﹣x的图象如图:∵函数f(x)=ex+x﹣2的零点为a,函数g(x)=lnx+x﹣2的零点为b,∴y=ex与y=2﹣x的交点的横坐标为a,y=lnx与y=2﹣x交点的横坐标为b,由图象知a<1<b,故选A考点:函数的零点4、D【解析】根据对数的运算变形、,再根据对数函数的性质判断即可;【详解】解:,,因为函数在定义域上单调递增,且,所以,即,故选:D5、D【解析】利用平面与平面垂直和平行的判定和性质,直线与平面平行的判断,对选项逐一判断即可【详解】①若m∥α,m∥β,则α∥β或α与β相交,错误命题;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β或α与β相交.错误的命题;③m⊂α,n⊂β,m、n是异面直线,那么n与α相交,也可能n∥α,是错误命题;④若α∩β=m,n∥m,且n⊄α,n⊄β,则n∥α且n∥β.是正确的命题故选D【点睛】本题考查平面与平面的位置关系,直线与平面的位置关系,考查空间想象力,属于中档题.6、D【解析】对每个函【解析】判断奇偶性及单调性即可.【详解】对于①,,奇函数,在和上分别单增,不满足条件;对于②,,偶函数,不满足条件;对于③,,奇函数,在R上单增,符合题意;对于④,,奇函数,在R上单增,符合题意;故选:D7、B【解析】根据指数函数、正切函数的性质,结合奇函数和单调性的性质进行逐一判断即可.【详解】A:当时,,所以该函数不是奇函数,不符合题意;B:由,设,因为,所以该函数是奇函数,,函数是上的增函数,所以函数是上的增函数,因此符合题意;C:当时,,当时,,显然不符合增函数的性质,故不符合题意;D:当时,,显然不符合增函数的性质,故不符合题意,故选:B8、A【解析】对于B.底面是矩形的平行六面体,它的侧面不一定是矩形,故它也不一定是长方体,故B错;对于C.棱柱的底面是平面多边形,不一定是平行四边形,故C错;对于D.棱锥的底面是平面多边形,不一定是三角形,故D错;故选A考点:1.命题的真假;2.空间几何体的特征9、C【解析】易知为非奇非偶函数,故排除选项A,因为,,故排除选项B、D,而在定义域上既是奇函数又是单调递增函数.故选C.10、A【解析】根据解析式判断函数单调性,再结合零点存在定理,即可判断零点所处区间.【详解】因为是单调增函数,故是单调增函数,至多一个零点,又,故的零点所在的区间为.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、##【解析】用辅助角公式将函数整理成的形式,即可求出最小值【详解】,,所以最小值为故答案为:12、【解析】由已知条件分析在上的单调性,利用函数的奇偶性可得,再根据函数的单调性解不等式即可.【详解】f(x)为偶函数,且当x≤0时,单调递增,当时,函数单调递减,若>,f(x)为偶函数,,,同时平方并化简得,解得或,即不等式>的解集为.故答案为:【点睛】本题考查函数的奇偶性与单调性的综合应用,属于中档题.13、【解析】化简函数的解析式,解方程,即可得解.【详解】当时,即当时,由,可得;当时,即当时,由,可得(舍).综上所述,函数的零点个数为.故答案为:.14、【解析】真数大于0求定义域.【详解】由题意得:,解得:,所以定义域为.故答案为:15、【解析】将所求代数式变形为,利用基本不等式即可求解.【详解】因为,所以,所以,当且仅当即时等号成立,所以的最小值为,故答案为:.16、或2【解析】分别对两条直线的斜率存在和不存在进行讨论,利用两条直线互相垂直的充要条件,得到关于的方程可求得结果【详解】设直线为直线;直线为直线,①当直线率不存在时,即,时,直线的斜率为0,故直线与直线互相垂直,所以时两直线互相垂直②当直线和斜率都存在时,,要使两直线互相垂直,即让两直线的斜率相乘为,故③当直线斜率不存在时,显然两直线不垂直,综上所述:或,故答案为或.【点睛】本题主要考查两直线垂直的充要条件,若利用斜率之积等于,应注意斜率不存在的情况,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由条件求得,将所求式展开计算(2)由条件求得与,再由二倍角与两角和的正切公式计算小问1详解】,,则故【小问2详解】角终边上一点,则由(1)可得,18、(1)见解析(2)【解析】(1)由线面垂直的判定定理可得平面,从而可得,证明,再根据线面垂直的判定定理可得平面PAC,再根据面面垂直的判定定理即可得证;(2)由线面垂直的性质可得,再根据线面垂直的判定定理可得平面,则有,从而可得即为二面角P-BC-A的平面角,从而可得出答案.【小问1详解】证明:因为PA⊥AB,PA⊥AC,,所以平面,又因平面,所以,因为D为线段AC的中点,,所以,又,所以平面PAC,又因为平面BDE,所以平面BDE⊥平面PAC;【小问2详解】解:由(1)得平面,又平面,所以,因为AB⊥BC,,所以平面,因为平面,所以,所以即为二面角P-BC-A平面角,中,,所以,所以,即二面角P-BC-A的平面角的大小为.19、(1)或;(2)或;【解析】(1)在直线上任取一点,由已知角的终边过点,利用诱导公式与三角函数定义即可求解,要注意分类讨论m的正负.(2)先利用商的关系化简原式为,结合第一问利用三角函数定义分别求得与,要注意分类讨论m的正负.【详解】(1)在直线上任取一点,由已知角的终边过点,,,利用诱导公式与三角函数定义可得:,当时,;当时,(2)原式同理(1)利用三角函数定义可得:,当时,,,此时原式;当时,,,此时原式;【点睛】易错点睛:本题考查三角函数化简求值,解本题时要注意的事项:角的终边在直线上,但未确定在象限,要分类讨论,考查学生的转化能力与运算解能力,属于中档题.20、(1),;(2)见解析【解析】(1)首先根据题中所给的条件,可以求得,从而有,将代入,整理求得结果,同理求得;(2)根据条件整理得到,从而得到与共线,即,,三点共线,证得结果.【详解】(1)解:因为,所以,所以.因为,所以,所以.(2)证明:因为,所以.因为,所以,即与共线.因为与的有公共点,所以,,三点共线.【点睛】该题考查的是有关向量的问题,涉及到的知识点有平面向量基本定理,利用向量共线证得三点共线,属于简单题目.21、(1),增区间是,减区间是(2),【解析】(1)根据余弦函数的图象与性质,求出f(x)的最小正周期和单调增、减区间;(2)求出x∈[,]时2x的取值范围,从而求得f(x)的最大最小值【详解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- (新教材)2026年人教版三年级上册数学 第1课时 进一步认识分数 课件
- 基建档案培训课件
- 2026年黔东南民族职业技术学院单招职业倾向性考试题库附答案详解
- 2026年武汉警官职业学院单招职业适应性考试题库及答案详解1套
- 2026年江西工商职业技术学院单招职业技能考试题库及参考答案详解1套
- 2026年郑州铁路职业技术学院单招职业适应性测试题库及答案详解一套
- 2026年吉林省辽源市单招职业适应性考试题库参考答案详解
- 2026年重庆艺术工程职业学院单招综合素质考试题库及完整答案详解1套
- 2026年朝阳师范高等专科学校单招职业适应性测试题库参考答案详解
- 2026年江西省吉安市单招职业倾向性考试题库及答案详解1套
- 人货电梯施工方案
- 南大版一年级心理健康第7课《情绪小世界》课件
- 光大金瓯资产管理有限公司笔试
- 算力产业园项目计划书
- 塔式起重机安全管理培训课件
- 老年髋部骨折快速康复治疗
- 【初中地理】跨学科主题学习探 索外来食料作物的传播史课件-2024-2025学年七年级上学期(人教版2024)
- 四川省南充市2024-2025学年高一地理上学期期末考试试题含解析
- 安徒生童话《枞树》
- 化学品管理控制程序
- 探索·鄱阳湖智慧树知到期末考试答案2024年
评论
0/150
提交评论