安徽省定远育才学校2026届高二上数学期末学业质量监测试题含解析_第1页
安徽省定远育才学校2026届高二上数学期末学业质量监测试题含解析_第2页
安徽省定远育才学校2026届高二上数学期末学业质量监测试题含解析_第3页
安徽省定远育才学校2026届高二上数学期末学业质量监测试题含解析_第4页
安徽省定远育才学校2026届高二上数学期末学业质量监测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省定远育才学校2026届高二上数学期末学业质量监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在区间内随机取一个数,则方程表示焦点在轴上的椭圆的概率是A. B.C. D.2.已知奇函数是定义在R上的可导函数,的导函数为,当时,有,则不等式的解集为()A. B.C. D.3.若命题为“,”,则为()A., B.,C., D.,4.方程表示的曲线是()A.一个椭圆和一条直线 B.一个椭圆和一条射线C.一条射线 D.一个椭圆5.下列说法错误的是()A.“若,则”的逆否命题是“若,则”B.“”的否定是”C.“是"”的必要不充分条件D.“或是"”的充要条件6.如图所示几何体的正视图和侧视图都正确的是()A. B.C. D.7.已知椭圆C:的左,右焦点,过原点的直线l与椭圆C相交于M,N两点.其中M在第一象限.,则椭圆C的离心率的取值范围为()A. B.C. D.8.在空间直角坐标系中,若,,则()A. B.C. D.9.已知数列的前n项和为,,,则()A. B.C.1025 D.204910.已知点B是A(3,4,5)在坐标平面xOy内的射影,则||=()A. B.C.5 D.511.抛物线的焦点坐标是()A. B.C. D.12.下列求导错误的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.直线的倾斜角为_______________.14.已知数列的通项公式为,记数列的前项和为,则__________,的最小值为__________15.函数是R上的单调递增函数,则a的取值范围是______16.在长方体中,设,,则异面直线与所成角的大小为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆,圆.(1)试判断圆C与圆M的位置关系,并说明理由;(2)若过点的直线l与圆C相切,求直线l的方程.18.(12分)已知椭圆的左、右顶点坐标分别是,,短轴长等于焦距.(1)求椭圆的方程;(2)若直线与椭圆相交于两点,线段的中点为,求.19.(12分)已知椭圆的离心率为,且经过点.(1)求椭圆的方程;(2)经过点的直线与椭圆交于不同的两点,,为坐标原点,若的面积为,求直线的方程.20.(12分)在平面直角坐标系中,已知点.点M满足.记M的轨迹为C.(1)求C的方程;(2)直线l经过点,与轨迹C分别交于点M、N,与直线交于点Q,求证:.21.(12分)已知函数.(1)求函数f(x)的最小正周期;(2)当时,求函数f(x)的值域.22.(10分)已知数列中,,且满足(1)求证数列是等差数列,并求数列的通项公式;(2)求数列的前n项和

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】若方程表示焦点在轴上的椭圆,则,解得,,故方程表示焦点在轴上的椭圆的概率是,故选D.2、B【解析】根据给定的不等式构造函数,再探讨函数的性质,借助性质解不等式作答.【详解】依题意,令,因是R上的奇函数,则,即是R上的奇函数,当时,,则有在单调递增,又函数在R上连续,因此,函数在R上单调递增,不等式,于是得,解得,所以原不等式的解集是.故选:B3、B【解析】特称命题的否定是全称命题,把存在改为任意,把结论否定.【详解】“,”的否命题为“,”,故选:B4、A【解析】根据题意得到或,即可求解.【详解】由方程,可得或,即或,所以方程表示的曲线为一个椭圆或一条直线.故选:A.5、C【解析】利用逆否命题、命题的否定、充分必要性的概念逐一判断即可.【详解】对于A,“若,则”的逆否命题是“若,则”,正确;对于B,“”的否定是”,正确;对于C,“”等价于“或,∴“是"”的充分不必要条件,错误;对于D,“或是"”的充要条件,正确.故选:C6、B【解析】根据侧视图,没有实对角线,正视图实对角线的方向,排除错误选项,得到答案.【详解】侧视时,看到一个矩形且不能有实对角线,故A,D排除而正视时,有半个平面是没有的,所以应该有一条实对角线,且其对角线位置应从左上角画到右下角,故C排除.故选:B.7、D【解析】由题设易知四边形为矩形,可得,结合已知条件有即可求椭圆C的离心率的取值范围.【详解】由椭圆的对称性知:,而,又,即四边形为矩形,所以,则且M在第一象限,整理得,所以,又即,综上,,整理得,所以.故选:D.【点睛】关键点点睛:由椭圆的对称性及矩形性质可得,由已知条件得到,进而得到椭圆参数的齐次式求离心率范围.8、B【解析】直接利用空间向量的坐标运算求解.【详解】解:因为,,所以.故选:B9、B【解析】根据题意得,进而根据得数列是等比数列,公比为,首项为,再根据等比数列求和公式求解即可.【详解】解:因为数列的前n项和为满足,所以当时,,解得,当时,,即所以,解得或,因为,所以.所以,,所以当时,,所以,即所以数列是等比数列,公比为,首项为,所以故选:B10、C【解析】先求出B(3,4,0),由此能求出||【详解】解:∵点B是点A(3,4,5)在坐标平面Oxy内的射影,∴B(3,4,0),则||==5故选:C11、C【解析】化为标准方程,利用焦点坐标公式求解.【详解】抛物线的标准方程为,所以抛物线的焦点在轴上,且,所以,所以抛物线的焦点坐标为.故选:C12、B【解析】根据导数运算求得正确答案.【详解】、、运算正确.,B选项错误.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由直线的斜率为,得到,即可求解.【详解】由题意,可知直线的斜率为,设直线的倾斜角为,则,解得,即换线的倾斜角为.【点睛】本题主要考查直线的倾斜角的求解问题,其中解答中熟记直线的倾斜角与斜率的关系,合理准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.14、①.②.【解析】首先确定的正负,分别在和两种情况下求得,代入即可求得;由可求得,分别在和两种情况下结合一次函数和对勾函数单调性得到最小值,综合可得最终结果.【详解】令,解得:,则当时,;当时,;当时,;当时,;;,当时,;当时,在上单调递减,在上单调递增,又,,,当时,;综上所述:.故答案为:;.【点睛】关键点点睛:本题考查含绝对值的数列前项和的求解问题,解题关键是能够确定数列的变号项,从而以变号项为分类基准进行分类讨论得到数列的前项和;求解数列中的最值问题的关键是能够利用数列与函数的关系,结合函数单调性和来进行求解.15、【解析】对求导,由题设有恒成立,再利用导数求的最小值,即可求a的范围.【详解】由题设,,又在R上的单调递增函数,∴恒成立,令,则,∴当时,则递减;当时,则递增.∴,故.故答案为:.16、##【解析】建立空间直角坐标系,用向量法即可求出异面直线与所成的角.【详解】以为原点,所在直线分别为轴,轴,轴,建立空间直角坐标系,则,所以,因为,所以,即,所以异面直线与所成的角为.故答案为:90°.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)圆C与圆M相交,理由见解析(2)或【解析】(1)利用圆心距与半径的关系即可判断结果;(2)讨论,当直线l的斜率不存在时则方程为,当直线l的斜率存在时,设其方程为,利用圆心到直线的距离等于半径计算即可得出结果.【小问1详解】把圆M的方程化成标准方程,得,圆心为,半径.圆C的圆心为,半径,因为,所以圆C与圆M相交,【小问2详解】①当直线l的斜率不存在时,直线l的方程为到圆心C距离为2,满足题意;②当直线l的斜率存在时,设其方程为,由题意得,解得,故直线l的方程为.综上,直线l的方程为或.18、(1);(2).【解析】(1)由椭圆顶点可知,又短轴长等于焦距可知,求出,即可写出椭圆方程(2)根据“点差法”可求直线的斜率,写出直线方程,联立椭圆方程可得,,代入弦长公式即可求解.【详解】(1)依题意,解得.故椭圆方程为.(2)设的坐标分别为,,直线的斜率显然存在,设斜率为,则,两式相减得,整理得.因为线段的中点为,所以,所以直线的方程为,联立,得,则,,故.【点睛】本题主要考查了椭圆的标准方程及简单几何性质,“点差法”,弦长公式,属于中档题.19、(1);(2)或.【解析】(1)由离心率公式、将点代入椭圆方程得出椭圆的方程;(2)联立椭圆和直线的方程,由判别式得出的范围,再由韦达定理结合三角形面积公式得出,求出的值得出直线的方程.【详解】解:(1)因为椭圆的离心率为,所以.①又因为椭圆经过点,所以有.②联立①②可得,,,所以椭圆的方程为.(2)由题意可知,直线的斜率存在,设直线的方程为.由消去整理得,.因为直线与椭圆交于不同两点,所以,即,所以设,,则,.由题意得,面积,即.因为的面积为,所以,即.化简得,,即,解得或,均满足,所以或.所以直线的方程为或.【点睛】关键点睛:在第二问中,关键是由韦达定理建立的关系,结合三角形面积公式求出斜率,得出直线的方程.20、(1)(2)证明见解析【解析】(1)根据已知得点M的轨迹C为椭圆,根据椭圆定义可得方程;(2)直线的方程设为,与椭圆方程联立,利用韦达定理及线段长公式进行计算即可.【小问1详解】由椭圆定义得,点M的轨迹C为以点为焦点,长轴长为4的椭圆,设此椭圆的标准方程为,则由题意得,所以C方程为;【小问2详解】设点的坐标分别为,由题意知直线的斜率一定存在,设为,则直线的方程可设为,与椭圆方程联立可得,由韦达定理知,所以,,又因为,所以又由题知,所以,所以,所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论