【《光纤光流控微腔激光器国内外文献综述》5900字】_第1页
【《光纤光流控微腔激光器国内外文献综述》5900字】_第2页
【《光纤光流控微腔激光器国内外文献综述》5900字】_第3页
【《光纤光流控微腔激光器国内外文献综述》5900字】_第4页
【《光纤光流控微腔激光器国内外文献综述》5900字】_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

光纤光流控微腔激光器国内外文献综述随着光纤新结构的设计、以及光纤拉制及先进加工技术的发展,光纤成为了优秀的波导介质和理想的光流控载体。光纤光流控微腔激光器集成了光纤微腔、微流体通道及液体增益介质,在光纤微腔的作用下,光与物质的相互作用增强,可实现高灵敏度的传感应用。特别是空芯微结构光纤与微流体技术的有机结合,为实现光与流体之间的高效相互作用、光子调控和新型高性能生化传感技术开辟了新的研究空间,具有重要的科学研究意义和诱人的应用前景。1.1光纤光流控微腔激光器国内外研究现状光纤光流控微腔激光器同上述光流控微腔激光器一样,也是由三部分构成,分别是激光泵浦源、液体增益介质和光学微腔,由光纤微腔构成的光流控微腔激光器被称之为光纤光流控微腔激光器。光纤微腔是一种被植入在光纤内部的微型腔体,关于光纤光流控微腔激光器的国内外研究工作和现状,可根据光纤微腔的类型展开为:第一类是基于光子带隙谐振腔的光纤光流控激光器。在空芯布拉格光纤中,光纤径向是周期性多层介质膜,形成光子带隙。利用空芯布拉格光纤实现光流控微腔激光器时,空芯布拉格光纤的多层介质膜的反射为激光发射提供光反馈。2006年,麻省理工学院的O.Shapira等人利用布拉格光纤实现了光纤径向的激光发射(图1.6(a))ADDINEN.CITE<EndNote><Cite><Author>Shapira</Author><Year>2006</Year><RecNum>302</RecNum><DisplayText><styleface="superscript">[161]</style></DisplayText><record><rec-number>302</rec-number><foreign-keys><keyapp="EN"db-id="fsp2sprfses59ge9tf3xezao9xp909p92tdw"timestamp="1614321784">302</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Shapira,Ofer</author><author>Kuriki,Ken</author><author>Orf,NicholasD.</author><author>Abouraddy,AymanF.</author><author>Benoit,Gilles</author><author>Viens,JeanF.</author><author>Rodriguez,Alejandro</author><author>Ibanescu,Mihai</author><author>Joannopoulos,JohnD.</author><author>Fink,Yoel</author><author>Brewster,MeganM.</author></authors></contributors><titles><title>Surface-emittingfiberlasers</title><secondary-title>OpticsExpress</secondary-title><alt-title>Opt.Express</alt-title></titles><periodical><full-title>OpticsExpress</full-title></periodical><pages>3929-3935</pages><volume>14</volume><number>9</number><keywords><keyword>Dyelasers</keyword><keyword>Laserresonators</keyword><keyword>Lasers,fiber</keyword><keyword>Fiberlasers</keyword><keyword>Laserlight</keyword><keyword>Photodynamictherapy</keyword><keyword>Photonicbandgapfibers</keyword><keyword>Surfaceemittinglasers</keyword><keyword>Visiblelight</keyword></keywords><dates><year>2006</year><pub-dates><date>2006/05/01</date></pub-dates></dates><publisher>OSA</publisher><urls><related-urls><url>/abstract.cfm?URI=oe-14-9-3929</url></related-urls></urls><electronic-resource-num>10.1364/OE.14.003929</electronic-resource-num></record></Cite></EndNote>[\o"Shapira,2006#302"161]。2012年,同是麻省理工学院的A.M.Stolyarov等人在布拉格光纤包层制作了微流体通道并引入液晶,实现了输出激光的电调制(图1.6(b))ADDINEN.CITE<EndNote><Cite><Author>Stolyarov</Author><Year>2012</Year><RecNum>301</RecNum><DisplayText><styleface="superscript">[162]</style></DisplayText><record><rec-number>301</rec-number><foreign-keys><keyapp="EN"db-id="fsp2sprfses59ge9tf3xezao9xp909p92tdw"timestamp="1614320205">301</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Stolyarov,AlexanderM.</author><author>Wei,Lei</author><author>Shapira,Ofer</author><author>Sorin,Fabien</author><author>Chua,SongL.</author><author>Joannopoulos,JohnD.</author><author>Fink,Yoel</author></authors></contributors><titles><title>Microfluidicdirectionalemissioncontrolofanazimuthallypolarizedradialfibrelaser</title><secondary-title>NaturePhotonics</secondary-title></titles><periodical><full-title>NaturePhotonics</full-title></periodical><pages>229-233</pages><volume>6</volume><number>4</number><dates><year>2012</year><pub-dates><date>2012/04/01</date></pub-dates></dates><isbn>1749-4893</isbn><urls><related-urls><url>/10.1038/nphoton.2012.24</url></related-urls></urls><electronic-resource-num>10.1038/nphoton.2012.24</electronic-resource-num></record></Cite></EndNote>[\o"Stolyarov,2012#301"162]。2016年,南洋理工大学的N.Zhang等人采用量子点作为增益介质降低了布拉格光纤光流控微腔激光器的光漂白效应(图1.6(c))ADDINEN.CITE<EndNote><Cite><Author>Zhang</Author><Year>2016</Year><RecNum>303</RecNum><DisplayText><styleface="superscript">[163]</style></DisplayText><record><rec-number>303</rec-number><foreign-keys><keyapp="EN"db-id="fsp2sprfses59ge9tf3xezao9xp909p92tdw"timestamp="1614322953">303</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Zhang,Nan</author><author>Liu,He</author><author>Stolyarov,AlexanderM.</author><author>Zhang,Ting</author><author>Li,Kaiwei</author><author>Shum,PerryPing</author><author>Fink,Yoel</author><author>Sun,XiaoWei</author><author>Wei,Lei</author></authors></contributors><titles><title>AzimuthallyPolarizedRadialEmissionfromaQuantumDotFiberLaser</title><secondary-title>ACSPhotonics</secondary-title></titles><periodical><full-title>ACSPhotonics</full-title></periodical><pages>2275-2279</pages><volume>3</volume><number>12</number><dates><year>2016</year><pub-dates><date>2016/12/21</date></pub-dates></dates><publisher>AmericanChemicalSociety</publisher><urls><related-urls><url>/10.1021/acsphotonics.6b00724</url></related-urls></urls><electronic-resource-num>10.1021/acsphotonics.6b00724</electronic-resource-num></record></Cite></EndNote>[\o"Zhang,2016#303"163]。从这些文献可知,布拉格光纤光流控微腔激光器虽然无需额外制作微流体通道,简化了光流控微腔激光器的实验装置,但因利用光纤本征结构实现的光反馈,需要在轴向泵浦作用下,才能实现光流控激光的产生。因此布拉格光纤光流控微腔激光器对泵浦光的耦合要求高。图1.6典型的基于光子带隙谐振腔的光纤光流控激光器。(a)径向发射的光纤光流控激光器ADDINEN.CITE<EndNote><Cite><Author>Shapira</Author><Year>2006</Year><RecNum>302</RecNum><DisplayText><styleface="superscript">[161]</style></DisplayText><record><rec-number>302</rec-number><foreign-keys><keyapp="EN"db-id="fsp2sprfses59ge9tf3xezao9xp909p92tdw"timestamp="1614321784">302</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Shapira,Ofer</author><author>Kuriki,Ken</author><author>Orf,NicholasD.</author><author>Abouraddy,AymanF.</author><author>Benoit,Gilles</author><author>Viens,JeanF.</author><author>Rodriguez,Alejandro</author><author>Ibanescu,Mihai</author><author>Joannopoulos,JohnD.</author><author>Fink,Yoel</author><author>Brewster,MeganM.</author></authors></contributors><titles><title>Surface-emittingfiberlasers</title><secondary-title>OpticsExpress</secondary-title><alt-title>Opt.Express</alt-title></titles><periodical><full-title>OpticsExpress</full-title></periodical><pages>3929-3935</pages><volume>14</volume><number>9</number><keywords><keyword>Dyelasers</keyword><keyword>Laserresonators</keyword><keyword>Lasers,fiber</keyword><keyword>Fiberlasers</keyword><keyword>Laserlight</keyword><keyword>Photodynamictherapy</keyword><keyword>Photonicbandgapfibers</keyword><keyword>Surfaceemittinglasers</keyword><keyword>Visiblelight</keyword></keywords><dates><year>2006</year><pub-dates><date>2006/05/01</date></pub-dates></dates><publisher>OSA</publisher><urls><related-urls><url>/abstract.cfm?URI=oe-14-9-3929</url></related-urls></urls><electronic-resource-num>10.1364/OE.14.003929</electronic-resource-num></record></Cite></EndNote>[\o"Shapira,2006#302"161];(b)可电调制的光纤光流控激光器ADDINEN.CITE<EndNote><Cite><Author>Stolyarov</Author><Year>2012</Year><RecNum>301</RecNum><DisplayText><styleface="superscript">[162]</style></DisplayText><record><rec-number>301</rec-number><foreign-keys><keyapp="EN"db-id="fsp2sprfses59ge9tf3xezao9xp909p92tdw"timestamp="1614320205">301</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Stolyarov,AlexanderM.</author><author>Wei,Lei</author><author>Shapira,Ofer</author><author>Sorin,Fabien</author><author>Chua,SongL.</author><author>Joannopoulos,JohnD.</author><author>Fink,Yoel</author></authors></contributors><titles><title>Microfluidicdirectionalemissioncontrolofanazimuthallypolarizedradialfibrelaser</title><secondary-title>NaturePhotonics</secondary-title></titles><periodical><full-title>NaturePhotonics</full-title></periodical><pages>229-233</pages><volume>6</volume><number>4</number><dates><year>2012</year><pub-dates><date>2012/04/01</date></pub-dates></dates><isbn>1749-4893</isbn><urls><related-urls><url>/10.1038/nphoton.2012.24</url></related-urls></urls><electronic-resource-num>10.1038/nphoton.2012.24</electronic-resource-num></record></Cite></EndNote>[\o"Stolyarov,2012#301"162];(c)基于量子点增益的光纤光流控激光器ADDINEN.CITE<EndNote><Cite><Author>Zhang</Author><Year>2016</Year><RecNum>303</RecNum><DisplayText><styleface="superscript">[163]</style></DisplayText><record><rec-number>303</rec-number><foreign-keys><keyapp="EN"db-id="fsp2sprfses59ge9tf3xezao9xp909p92tdw"timestamp="1614322953">303</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Zhang,Nan</author><author>Liu,He</author><author>Stolyarov,AlexanderM.</author><author>Zhang,Ting</author><author>Li,Kaiwei</author><author>Shum,PerryPing</author><author>Fink,Yoel</author><author>Sun,XiaoWei</author><author>Wei,Lei</author></authors></contributors><titles><title>AzimuthallyPolarizedRadialEmissionfromaQuantumDotFiberLaser</title><secondary-title>ACSPhotonics</secondary-title></titles><periodical><full-title>ACSPhotonics</full-title></periodical><pages>2275-2279</pages><volume>3</volume><number>12</number><dates><year>2016</year><pub-dates><date>2016/12/21</date></pub-dates></dates><publisher>AmericanChemicalSociety</publisher><urls><related-urls><url>/10.1021/acsphotonics.6b00724</url></related-urls></urls><electronic-resource-num>10.1021/acsphotonics.6b00724</electronic-resource-num></record></Cite></EndNote>[\o"Zhang,2016#303"163]第二类是基于光纤FP谐振腔的光纤光流控激光器。光纤FP腔由两个相互平行的光纤反射面构成,通过两个光纤反射面间的来回反射实现光的增强。由于石英-空气界面上的菲涅尔反射率较低,导致光在腔内的往返次数有限。为实现基于光纤FP谐振腔的光流控微腔激光器的激光发射,需要提高光和物质之间的相互作用。为此,科研人员们在光纤端面进行镀膜操作以提高反射端面的反射率,进而增多光在腔内的往返次数,实现激光发射。2006年,UniversitéParis-Sud的Q.Kou通过在光纤端面镀金膜的方式使端面反射率提高到了80%,并采用罗丹明6G和磺酰罗丹明101双染料作为增益介质,实现了双波长光纤光流控微腔激光输出ADDINEN.CITE<EndNote><Cite><Author>Kou</Author><Year>2006</Year><RecNum>295</RecNum><DisplayText><styleface="superscript">[164]</style></DisplayText><record><rec-number>295</rec-number><foreign-keys><keyapp="EN"db-id="fsp2sprfses59ge9tf3xezao9xp909p92tdw"timestamp="1614302685">295</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Kou,Q</author><author>Yesilyurt,I</author><author>Chen,Y</author></authors></contributors><titles><title>Collineardual-colorlaseremissionfromamicrofluidicdyelaser</title><secondary-title>Appliedphysicsletters</secondary-title></titles><periodical><full-title>AppliedPhysicsLetters</full-title></periodical><pages>091101</pages><volume>88</volume><number>9</number><dates><year>2006</year></dates><isbn>0003-6951</isbn><urls></urls></record></Cite></EndNote>[\o"Kou,2006#295"164](图1.7(a))。2011年,同是UniversitéParis-Sud的G.Aubry等人在上述科研工作的基础上,得到了波长可切换的光纤流控微腔激光器,通过控制染料液滴使其交替流入光纤FP腔中,实现输出波长的快速切换ADDINEN.CITE<EndNote><Cite><Author>Aubry</Author><Year>2011</Year><RecNum>296</RecNum><DisplayText><styleface="superscript">[165]</style></DisplayText><record><rec-number>296</rec-number><foreign-keys><keyapp="EN"db-id="fsp2sprfses59ge9tf3xezao9xp909p92tdw"timestamp="1614303377">296</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Aubry,G</author><author>Kou,Q</author><author>Soto-Velasco,J</author><author>Wang,C</author><author>Meance,S</author><author>He,JJ</author><author>Haghiri-Gosnet,AM</author></authors></contributors><titles><title>Amulticolormicrofluidicdropletdyelaserwithsinglemodeemission</title><secondary-title>AppliedPhysicsLetters</secondary-title></titles><periodical><full-title>AppliedPhysicsLetters</full-title></periodical><pages>111111</pages><volume>98</volume><number>11</number><dates><year>2011</year></dates><isbn>0003-6951</isbn><urls></urls></record></Cite></EndNote>[\o"Aubry,2011#296"165](图1.7(b))。2013年,四川大学的H.Zhou等人通过调整连接到平移台的光纤,将光纤FP腔的长度从3mm更改为20mm,实现了光流控激光器从564nm到581nm的输出波长的可调性,即实现了18nm的波长调节ADDINEN.CITE<EndNote><Cite><Author>Zhou</Author><Year>2013</Year><RecNum>298</RecNum><DisplayText><styleface="superscript">[166]</style></DisplayText><record><rec-number>298</rec-number><foreign-keys><keyapp="EN"db-id="fsp2sprfses59ge9tf3xezao9xp909p92tdw"timestamp="1614304436">298</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Zhou,Hao</author><author>Feng,Guoying</author><author>Yao,Ke</author><author>Yang,Chao</author><author>Yi,Jiayu</author><author>Zhou,Shouhuan</author></authors></contributors><titles><title>Fiber-basedtunablemicrocavityfluidicdyelaser</title><secondary-title>OpticsLetters</secondary-title><alt-title>Opt.Lett.</alt-title></titles><periodical><full-title>OpticsLetters</full-title><abbr-1>Opt.Lett.</abbr-1></periodical><alt-periodical><full-title>OpticsLetters</full-title><abbr-1>Opt.Lett.</abbr-1></alt-periodical><pages>3604-3607</pages><volume>38</volume><number>18</number><keywords><keyword>Dyelasers</keyword><keyword>Lasers,tunable</keyword><keyword>Microcavitydevices</keyword><keyword>Laserdyes</keyword><keyword>Microcavitylasers</keyword><keyword>Photoniccrystalfibers</keyword><keyword>Physicalvapordeposition</keyword><keyword>Whisperinggallerymodes</keyword></keywords><dates><year>2013</year><pub-dates><date>2013/09/15</date></pub-dates></dates><publisher>OSA</publisher><urls><related-urls><url>/abstract.cfm?URI=ol-38-18-3604</url></related-urls></urls><electronic-resource-num>10.1364/OL.38.003604</electronic-resource-num></record></Cite></EndNote>[\o"Zhou,2013#298"166](图1.7(c))。2015年,巴西MackenziePresbyterian大学的R.M.GEROSA基于光纤端面的菲涅尔反射实现了全光纤结构的高重频的光纤光流控激光输出ADDINEN.CITE<EndNote><Cite><Author>Gerosa</Author><Year>2015</Year><RecNum>299</RecNum><DisplayText><styleface="superscript">[167]</style></DisplayText><record><rec-number>299</rec-number><foreign-keys><keyapp="EN"db-id="fsp2sprfses59ge9tf3xezao9xp909p92tdw"timestamp="1614305251">299</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Gerosa,RodrigoM</author><author>Sudirman,Aziza</author><author>Menezes,LeonardodeS</author><author>Margulis,Walter</author><author>deMatos,ChristianoJS</author></authors></contributors><titles><title>All-fiberhighrepetitionratemicrofluidicdyelaser</title><secondary-title>Optica</secondary-title></titles><periodical><full-title>Optica</full-title><abbr-1>Optica</abbr-1></periodical><pages>186-193</pages><volume>2</volume><number>2</number><dates><year>2015</year></dates><isbn>2334-2536</isbn><urls></urls></record></Cite></EndNote>[\o"Gerosa,2015#299"167](图1.7(d))。2018年,上海交通大学的Y.KONG等人在光纤端面镀不同厚度的银膜,使端面反射率为85%和99%,并通过对层流进行控制,在泵浦能量密度超过26.1μJ∕mm2时获得了低阈值的白色激光ADDINEN.CITE<EndNote><Cite><Author>Kong</Author><Year>2018</Year><RecNum>144</RecNum><DisplayText><styleface="superscript">[92]</style></DisplayText><record><rec-number>144</rec-number><foreign-keys><keyapp="EN"db-id="fsp2sprfses59ge9tf3xezao9xp909p92tdw"timestamp="1612102222">144</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Kong,Yue</author><author>Dai,Hailang</author><author>He,Xie</author><author>Zheng,Yuanlin</author><author>Chen,Xianfeng</author></authors></contributors><titles><title>ReconfigurableRGBdyelasersbasedonthelaminarflowcontrolinanoptofluidicchip</title><secondary-title>OpticsLetters</secondary-title><alt-title>Opt.Lett.</alt-title></titles><periodical><full-title>OpticsLetters</full-title><abbr-1>Opt.Lett.</abbr-1></periodical><alt-periodical><full-title>OpticsLetters</full-title><abbr-1>Opt.Lett.</abbr-1></alt-periodical><pages>4461-4464</pages><volume>43</volume><number>18</number><keywords><keyword>Lasersandlaseroptics</keyword><keyword>Dyelasers</keyword><keyword>Laserresonators</keyword><keyword>Micro-opticaldevices</keyword><keyword>Microcavities</keyword><keyword>Laserbeams</keyword><keyword>Laserdyes</keyword><keyword>Opticalcomponents</keyword><keyword>Opticalfeedback</keyword><keyword>Visiblelight</keyword></keywords><dates><year>2018</year><pub-dates><date>2018/09/15</date></pub-dates></dates><publisher>OSA</publisher><urls><related-urls><url>/abstract.cfm?URI=ol-43-18-4461</url></related-urls></urls><electronic-resource-num>10.1364/OL.43.004461</electronic-resource-num></record></Cite></EndNote>[\o"Kong,2018#144"92](图1.7(e))。从这些文献可知,光纤FP腔结构使光场分布在两块高反射率界面之间,和染料增益介质具有较大的光场重叠面积,因具有较小的模式体积,更容易实现单纵模输出和输出波长的调谐,也便于输出激光耦合至光纤。但由于光纤FP腔对对准精度要求高及超高反射率光纤端面制作难度大,使得光纤FP腔的Q值较低,且光纤FP腔的腔长和Q值易受外界环境如震动、温度等因素的影响,造成激光器的输出波长和强度不稳定,即该类光纤光流控微腔激光器的稳定性较差。图1.7典型的基于光纤FP腔的光纤光流控激光器。(a)采用双染料实现的双波长光纤光流控激光器ADDINEN.CITE<EndNote><Cite><Author>Kou</Author><Year>2006</Year><RecNum>295</RecNum><DisplayText><styleface="superscript">[164]</style></DisplayText><record><rec-number>295</rec-number><foreign-keys><keyapp="EN"db-id="fsp2sprfses59ge9tf3xezao9xp909p92tdw"timestamp="1614302685">295</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Kou,Q</author><author>Yesilyurt,I</author><author>Chen,Y</author></authors></contributors><titles><title>Collineardual-colorlaseremissionfromamicrofluidicdyelaser</title><secondary-title>Appliedphysicsletters</secondary-title></titles><periodical><full-title>AppliedPhysicsLetters</full-title></periodical><pages>091101</pages><volume>88</volume><number>9</number><dates><year>2006</year></dates><isbn>0003-6951</isbn><urls></urls></record></Cite></EndNote>[\o"Kou,2006#295"164];(b)通过染料交替流入实现的波长可切换的光纤光流控激光器ADDINEN.CITE<EndNote><Cite><Author>Aubry</Author><Year>2011</Year><RecNum>296</RecNum><DisplayText><styleface="superscript">[165]</style></DisplayText><record><rec-number>296</rec-number><foreign-keys><keyapp="EN"db-id="fsp2sprfses59ge9tf3xezao9xp909p92tdw"timestamp="1614303377">296</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Aubry,G</author><author>Kou,Q</author><author>Soto-Velasco,J</author><author>Wang,C</author><author>Meance,S</author><author>He,JJ</author><author>Haghiri-Gosnet,AM</author></authors></contributors><titles><title>Amulticolormicrofluidicdropletdyelaserwithsinglemodeemission</title><secondary-title>AppliedPhysicsLetters</secondary-title></titles><periodical><full-title>AppliedPhysicsLetters</full-title></periodical><pages>111111</pages><volume>98</volume><number>11</number><dates><year>2011</year></dates><isbn>0003-6951</isbn><urls></urls></record></Cite></EndNote>[\o"Aubry,2011#296"165];(c)通过调节腔长实现的波长可调谐的光纤光流控激光器ADDINEN.CITE<EndNote><Cite><Author>Zhou</Author><Year>2013</Year><RecNum>298</RecNum><DisplayText><styleface="superscript">[166]</style></DisplayText><record><rec-number>298</rec-number><foreign-keys><keyapp="EN"db-id="fsp2sprfses59ge9tf3xezao9xp909p92tdw"timestamp="1614304436">298</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Zhou,Hao</author><author>Feng,Guoying</author><author>Yao,Ke</author><author>Yang,Chao</author><author>Yi,Jiayu</author><author>Zhou,Shouhuan</author></authors></contributors><titles><title>Fiber-basedtunablemicrocavityfluidicdyelaser</title><secondary-title>OpticsLetters</secondary-title><alt-title>Opt.Lett.</alt-title></titles><periodical><full-title>OpticsLetters</full-title><abbr-1>Opt.Lett.</abbr-1></periodical><alt-periodical><full-title>OpticsLetters</full-title><abbr-1>Opt.Lett.</abbr-1></alt-periodical><pages>3604-3607</pages><volume>38</volume><number>18</number><keywords><keyword>Dyelasers</keyword><keyword>Lasers,tunable</keyword><keyword>Microcavitydevices</keyword><keyword>Laserdyes</keyword><keyword>Microcavitylasers</keyword><keyword>Photoniccrystalfibers</keyword><keyword>Physicalvapordeposition</keyword><keyword>Whisperinggallerymodes</keyword></keywords><dates><year>2013</year><pub-dates><date>2013/09/15</date></pub-dates></dates><publisher>OSA</publisher><urls><related-urls><url>/abstract.cfm?URI=ol-38-18-3604</url></related-urls></urls><electronic-resource-num>10.1364/OL.38.003604</electronic-resource-num></record></Cite></EndNote>[\o"Zhou,2013#298"166];(d)全光纤结构的光纤光流控激光器ADDINEN.CITE<EndNote><Cite><Author>Gerosa</Author><Year>2015</Year><RecNum>299</RecNum><DisplayText><styleface="superscript">[167]</style></DisplayText><record><rec-number>299</rec-number><foreign-keys><keyapp="EN"db-id="fsp2sprfses59ge9tf3xezao9xp909p92tdw"timestamp="1614305251">299</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Gerosa,RodrigoM</author><author>Sudirman,Aziza</author><author>Menezes,LeonardodeS</author><author>Margulis,Walter</author><author>deMatos,ChristianoJS</author></authors></contributors><titles><title>All-fiberhighrepetitionratemicrofluidicdyelaser</title><secondary-title>Optica</secondary-title></titles><periodical><full-title>Optica</full-title><abbr-1>Optica</abbr-1></periodical><pages>186-193</pages><volume>2</volume><number>2</number><dates><year>2015</year></dates><isbn>2334-2536</isbn><urls></urls></record></Cite></EndNote>[\o"Gerosa,2015#299"167];(e)通过层流控制实现的白光光纤光流控激光器ADDINEN.CITE<EndNote><Cite><Author>Kong</Author><Year>2018</Year><RecNum>144</RecNum><DisplayText><styleface="superscript">[92]</style></DisplayText><record><rec-number>144</rec-number><foreign-keys><keyapp="EN"db-id="fsp2sprfses59ge9tf3xezao9xp909p92tdw"timestamp="1612102222">144</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Kong,Yue</author><author>Dai,Hailang</author><author>He,Xie</author><author>Zheng,Yuanlin</author><author>Chen,Xianfeng</author></authors></contributors><titles><title>ReconfigurableRGBdyelasersbasedonthelaminarflowcontrolinanoptofluidicchip</title><secondary-title>OpticsLetters</secondary-title><alt-title>Opt.Lett.</alt-title></titles><periodical><full-title>OpticsLetters</full-title><abbr-1>Opt.Lett.</abbr-1></periodical><alt-periodical><full-title>OpticsLetters</full-title><abbr-1>Opt.Lett.</abbr-1></alt-periodical><pages>4461-4464</pages><volume>43</volume><number>18</number><keywords><keyword>Lasersandlaseroptics</keyword><keyword>Dyelasers</keyword><keyword>Laserresonators</keyword><keyword>Micro-opticaldevices</keyword><keyword>Microcavities</keyword><keyword>Laserbeams</keyword><keyword>Laserdyes</keyword><keyword>Opticalcomponents</keyword><keyword>Opticalfeedback</keyword><keyword>Visiblelight</keyword></keywords><dates><year>2018</year><pub-dates><date>2018/09/15</date></pub-dates></dates><publisher>OSA</publisher><urls><related-urls><url>/abstract.cfm?URI=ol-43-18-4461</url></related-urls></urls><electronic-resource-num>10.1364/OL.43.004461</electronic-resource-num></record></Cite></EndNote>[\o"Kong,2018#144"92]第三类是基于倏逝场的光纤微环谐振腔的光纤光流控激光器。光纤微环谐振腔多数基于光纤横截面构建微环结构,沿光纤轴向连续分布。较为常用的光纤微环谐振腔有:(1)利用普通通信光纤的光滑圆柱形外壁形成微环谐振腔。采用普通光纤作为谐振腔,泵浦方式有两种选择,分别是:光纤轴向抽运光和光纤侧向抽运光。激光增益通过由光纤截面构成的圆形谐振腔中回音壁模式的倏逝波耦合进入圆形谐振腔,并在腔内回音壁模式提供的光学反馈支持下产生激光振荡。较常用的是光纤-毛细管复合结构,即将通信光纤插入填充有液体增益介质的毛细管中,光纤和毛细管分别充当光学微腔和微流体通道ADDINEN.CITEADDINEN.CITE.DATA[\o"Moon,2000#304"168-172]。2009年,密苏里大学的Y.Sun等人利用通信光纤-毛细管复合结构,实现了光流控激光的出射ADDINEN.CITE<EndNote><Cite><Author>Sun</Author><Year>2009</Year><RecNum>183</RecNum><DisplayText><styleface="superscript">[173]</style></DisplayText><record><rec-number>183</rec-number><foreign-keys><keyapp="EN"db-id="fsp2sprfses59ge9tf3xezao9xp909p92tdw"timestamp="1612187395">183</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Sun,Yuze</author><author>Suter,JonathanD.</author><author>Fan,Xudong</author></authors></contributors><titles><title>Robustintegratedoptofluidic-ring-resonatordyelasers</title><secondary-title>OpticsLetters</secondary-title></titles><periodical><full-title>OpticsLetters</full-title><abbr-1>Opt.Lett.</abbr-1></periodical><pages>1042-1044</pages><volume>34</volume><number>7</number><dates><year>2009</year><pub-dates><date>Apr1</date></pub-dates></dates><isbn>0146-9592</isbn><accession-num>WOS:000265429100062</accession-num><urls><related-urls><url><GotoISI>://WOS:000265429100062</url></related-urls></urls><electronic-resource-num>10.1364/ol.34.001042</electronic-resource-num></record></Cite></EndNote>[\o"Sun,2009#183"173]。2018年,南京科技大学的Y.Wang等人采用通信光纤作为谐振腔,通过调节通信光纤与比色皿壁之间的距离进而实现对倏逝波耦合增益大小的控制,在532nm纳秒脉冲激光的激发下观察到单模和多模激光发射ADDINEN.CITE<EndNote><Cite><Author>Wang</Author><Year>2018</Year><RecNum>308</RecNum><DisplayText><styleface="superscript">[174]</style></DisplayText><record><rec-number>308</rec-number><foreign-keys><keyapp="EN"db-id="fsp2sprfses59ge9tf3xezao9xp909p92tdw"timestamp="1614387264">308</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Wang,Yuchen</author><author>Hu,Shu</author><author>Yang,Xiao</author><author>Wang,Ruizhi</author><author>Li,Heng</author><author>Sheng,Chuanxiang</author></authors></contributors><titles><title><styleface="normal"font="default"size="100%">Evanescent-wavepumpedsingle-modemicrocavitylaserfromfiberof125</style><styleface="normal"font="default"charset="161"size="100%">μm</style><styleface="normal"font="default"charset="134"size="100%"></style><styleface="normal"font="default"size="100%">diameter</style></title><secondary-title>PhotonicsResearch</secondary-title><alt-title>Photon.Res.</alt-title></titles><periodical><full-title>PhotonicsResearch</full-title><abbr-1>Photon.Res.</abbr-1></periodical><alt-periodical><full-title>PhotonicsResearch</full-title><abbr-1>Photon.Res.</abbr-1></alt-periodical><pages>332-338</pages><volume>6</volume><number>4</number><keywords><keyword>Lasers,single-mode</keyword><keyword>Integratedopticsdevices</keyword><keyword>Microcavities</keyword><keyword>Evanescentwavecoupling</keyword><keyword>Fiberlasers</keyword><keyword>Nanosecondpulses</keyword><keyword>Opticalfeedback</keyword><keyword>Singlemodelasers</keyword><keyword>Spontaneousemission</keyword></keywords><dates><year>2018</year><pub-dates><date>2018/04/01</date></pub-dates></dates><publisher>OSA</publisher><urls><related-urls><url>/prj/abstract.cfm?URI=prj-6-4-332</url></related-urls></urls><electronic-resource-num>10.1364/PRJ.6.000332</electronic-resource-num></record></Cite></EndNote>[\o"Wang,2018#308"174]。(2)利用微纳光纤,通过打结、绕环或线圈等方法形成微环谐振腔。微纳光纤的直径通常在几百纳米到3μm,具有强倏逝场,增益介质发出的荧光耦合入微纳光纤后还能通过倏逝场与增益介质相互作用并提供光反馈,当达到激光阈值条件后可形成激光出射ADDINEN.CITE<EndNote><Cite><Author>Jiang</Author><Year>2007</Year><RecNum>311</RecNum><DisplayText><styleface="superscript">[175,176]</style></DisplayText><record><rec-number>311</rec-number><foreign-keys><keyapp="EN"db-id="fsp2sprfses59ge9tf3xezao9xp909p92tdw"timestamp="1614389898">311</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Jiang,Xiaoshun</author><author>Song,Qinghai</author><author>Xu,Lei</author><author>Fu,Jian</author><author>Tong,Limin</author></authors></contributors><titles><title>Microfiberknotdyelaserbasedontheevanescent-wave-coupledgain</title><secondary-title>Appliedphysicsl

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论