版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省河口县第一中学2026届数学高二上期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知抛物线=的焦点为F,M、N是抛物线上两个不同的点,若,则线段MN的中点到y轴的距离为()A.8 B.4C. D.92.(2016新课标全国Ⅱ理科)已知F1,F2是双曲线E:的左,右焦点,点M在E上,MF1与轴垂直,sin,则E的离心率为A. B.C. D.23.已知圆,直线,则直线l被圆C所截得的弦长的最小值为()A.2 B.3C.4 D.54.是数列,,,-17,中的第几项()A第项 B.第项C.第项 D.第项5.已知等比数列的前n项和为,,,则()A. B.C. D.6.已知斜率为1的直线l过椭圆的右焦点,交椭圆于A,B两点,则弦AB的长为()A. B.C. D.7.已知两条异面直线的方向向量分别是,,则这两条异面直线所成的角满足()A. B.C. D.8.下列说法错误的是()A.“若,则”的逆否命题是“若,则”B.“”的否定是”C.“是"”的必要不充分条件D.“或是"”的充要条件9.已知直线与圆相交于两点,当的面积最大时,的值是()A. B.C. D.10.已知分别是双曲线的左、右焦点,动点P在双曲线的左支上,点Q为圆上一动点,则的最小值为()A.6 B.7C. D.511.在等差数列中,已知,则()A.4 B.8C.3 D.612.现有甲、乙、丙、丁、戊五位同学,分别带着A、B、C、D、E五个不同的礼物参加“抽盲盒”学游戏,先将五个礼物分别放入五个相同的盒子里,每位同学再分别随机抽取一个盒子,恰有一位同学拿到自己礼物的概率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在空间直角坐标系中,点关于原点的对称点为点,则___________.14.设椭圆的左,右焦点分别为,,过的直线l与C交于A,B两点(点A在x轴上方),且满足,则直线l的斜率为______.15.若、是双曲线的左右焦点,过的直线与双曲线的左右两支分别交于,两点.若为等边三角形,则双曲线的离心率为________.16.已知正三角形边长为a,则该三角形内任一点到三边的距离之和为定值.类比上述结论,在棱长为a的正四面体内,任一点到其四个面的距离之和为定值_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知双曲线的左,右焦点为,离心率为.(1)求双曲线C的渐近线方程;(2)过作斜率为k的直线l分别交双曲线的两条渐近线于A,B两点,若,求k的值.18.(12分)已知:,有,:方程表示经过第二、三象限的抛物线,.(1)若是真命题,求实数的取值范围;(2)若“”是假命题,“”是真命题,求实数的取值范围.19.(12分)已知圆心在直线上,且过点、(1)求的标准方程;(2)已知过点的直线被所截得的弦长为4,求直线的方程20.(12分)如图,在三棱锥中,,点为线段上的点.(1)若平面,试确定点的位置,并说明理由;(2)若,,,在(1)成立的前提下,求二面角的余弦值.21.(12分)已知命题p:,命题q:.(1)若命题p为真命题,求实数x的取值范围.(2)若p是q的充分条件,求实数m的取值范围;22.(10分)计算:(1)求函数(a,b为正常数)的导数(2)已知点P在曲线上,为曲线在点P处的切线的倾斜角,则的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】过分别作垂直于准线,垂足为,则由抛物线的定义可得,再过MN的中点作垂直于准线,垂足为,然后利用梯形的中位线定理可求得结果【详解】抛物线=的焦点,准线方程为直线如图,过分别作垂直于准线,垂足为,过MN的中点作垂直于准线,垂足为,则由抛物线的定义可得,因为,所以,因为是梯形的中位线,所以,所以线段MN的中点到y轴的距离为4,故选:B2、A【解析】由已知可得,故选A.考点:1、双曲线及其方程;2、双曲线的离心率.【方法点晴】本题考查双曲线及其方程、双曲线的离心率.,涉及方程思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型.由已知可得,利用双曲线的定义和双曲线的通径公式,可以降低计算量,提高解题速度.3、C【解析】直线l过定点D(1,1),当时,弦长最短.【详解】由,圆心,半径,,由,故直线l过定点,∵,故D在圆C内部,直线l始终与圆相交,当时,直线l被圆截得的弦长最短,,弦长=.故选:C.4、C【解析】利用等差数列的通项公式即可求解【详解】设数列,,,,是首项为,公差d=-4的等差数列{},,令,得故选:C5、A【解析】由,可得等比数列公比q=2,利用等比数列求和公式和通项公式即可求.【详解】设等比数列的公比为q,则,.故选:A.6、C【解析】根据题意求得直线l的方程,设,联立直线与椭圆的方程,利用韦达定理求得,再利用弦长公式即可得出答案.【详解】由椭圆知,,所以,所以右焦点坐标为,则直线的方程为,设,联立,消y得,,则,所以.即弦AB长为.故选:C.7、D【解析】利用向量夹角余弦公式直接求解【详解】解:两条异面直线的方向向量分别是,,这两条异面直线所成的角满足:,,故选:D8、C【解析】利用逆否命题、命题的否定、充分必要性的概念逐一判断即可.【详解】对于A,“若,则”的逆否命题是“若,则”,正确;对于B,“”的否定是”,正确;对于C,“”等价于“或,∴“是"”的充分不必要条件,错误;对于D,“或是"”的充要条件,正确.故选:C9、C【解析】利用点到直线的距离公式和弦长公式可以求出的面积是关于的一个式子,即可求出答案.【详解】圆心到直线的距离,弦长为..当,即时,取得最大值.故选:C.10、A【解析】由双曲线的定义及三角形的几何性质可求解.【详解】如图,圆的圆心为,半径为1,,,当,,三点共线时,最小,最小值为,而,所以故选:A11、B【解析】根据等差数列的性质计算出正确答案.【详解】由等差数列的性质可知,得.故选:B12、D【解析】利用排列组合知识求出每位同学再分别随机抽取一个盒子,恰有一位同学拿到自己礼物的情况个数,以及五人抽取五个礼物的总情况,两者相除即可.【详解】先从五人中抽取一人,恰好拿到自己礼物,有种情况,接下来的四人分为两种情况,一种是两两一对,两个人都拿到对方的礼物,有种情况,另一种是四个人都拿到另外一个人的礼物,不是两两一对,都拿到对方的情况,由种情况,综上:共有种情况,而五人抽五个礼物总数为种情况,故恰有一位同学拿到自己礼物的概率为.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先利用关于原点对称的点的坐标特征求出点,再利用空间两点间的距离公式即可求.【详解】因为B与关于原点对称,故,所以.故答案为:.14、【解析】设出直线的方程并与椭圆方程联立,结合根与系数关系以及求得直线的斜率.【详解】椭圆,由于在轴上方且直线的斜率存在,所以直线的斜率不为,设直线的方程为,且,由,消去并化简得,设,,则①,②,由于,所以③,由①②③解得所以直线的方程为,斜率为.故答案为:15、【解析】根据双曲线的定义算出△AF1F2中,|AF1|=2a,|AF2|=4a,由△ABF2是等边三角形得∠F1AF2=120°,利用余弦定理算出c=a,结合双曲线离心率公式即可算出双曲线C的离心率.【详解】因为△ABF2为等边三角形,可知,A为双曲线上一点,,B为双曲线上一点,则,即,∴由,则,已知,在△F1AF2中应用余弦定理得:,得c2=7a2,则e2=7⇒e=故答案为:【点睛】方法点睛:求双曲线的离心率,常常不能经过条件直接得到a,c的值,这时可将或视为一个整体,把关系式转化为关于或的方程,从而得到离心率的值.16、【解析】利用正四面体内任一点可将正四面体分成四个小四面体,令它们的高分别为,由体积相等即可求得;【详解】正三角形边长为a,则该三角形内任一点到三边的距离分别为,即有:,解得同理,棱长为a的正四面体内,任一点到其四个面的距离分别为,即有:,解得故答案为:【点睛】本题考查了利用空间几何体的等体积法求高的和为定值,属于简单题;三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由离心率可得双曲线的渐近线方程;(2)设,则的中点为,由,可得,然后的方程与双曲线的渐近线方程联立,利用韦达定理可得答案.【小问1详解】设,则,又,所以,得,所以双曲线的渐近线方程为.【小问2详解】由已知直线的倾斜角不是直角,,设,则的中点为,,由,可知,所以,即,因为的方程为,双曲线的渐近线方程可写为,由消去y,得,所以,,所以,因为,所以,即.18、(1)(2)【解析】(1)将问题转化为不等式对应的方程无解,进而根据根的判别式小于0,计算即可;(2)根据且、或命题的真假判断命题p、q的真假,列出对应的不等式组,解之即可.【小问1详解】由条件知,恒成立,只需的.解得.【小问2详解】若为真命题,则,解得.若“”是假命题,“”是真命题,所以和一真一假若真假,则,解得.若假真,则,解得.综上,实数的取值范围是.19、(1);(2)或.【解析】(1)由、两点坐标求出直线的垂直平分线的方程与直线上联立可得圆心坐标,由两点间距离公式求出半径,即可得圆的标准方程;(2)设直线的方程,求出圆心到直线的距离,再由垂径定理结合勾股定理列方程求出的值,即可得直线的方程【详解】由点、可得中点坐标为,,所以直线的垂直平分线的斜率为,可得直线的垂直平分线的方程为:即,由可得:,所以圆心为,,所以的标准方程为,(2)设直线的方程为即,圆心到直线的距离,则可得,即,解得:或,所以直线的方程为或,即或20、(1)点为MC的中点,理由见解析;(2)【解析】(1)由线面垂直得到线线垂直,进而由三线合一得到点为MC的中点;(2)作出辅助线,找到二面角的平面角,利用勾股定理求出各边长,用余弦定理求出答案.【小问1详解】点为MC的中点,理由如下:因为平面,平面,所以,,又,由三线合一得:点为MC的中点【小问2详解】取AB的中点H,连接PH,CH,则由(1)知:,结合点为MC的中点,所以PA=PB,故由三线合一得:PH⊥AB,且CH⊥AB,所以∠CHP即为二面角的平面角,因为,,,所以,,,由勾股定理得:,,,在△PCH中,由余弦定理得:,故二面角的余弦值为21、(1);(2).【解析】(1)由一元二次不等式的解法求得的范围;(2)由p是q
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 深度解析(2026)《GBT 39229-2020肥料和土壤调理剂 砷、镉、铬、铅、汞含量的测定》(2026年)深度解析
- 深度解析(2026)GBT 36800.3-2025塑料 热机械分析法(TMA) 第3部分:针入温度的测定 (2026年)深度解析
- 深度解析(2026)《GBT 34308.1-2017体育信息分类与代码 第1部分:分类编码导则》
- 深度解析(2026)《GBT 34189-2017免压蒸管桩硅酸盐水泥》
- 2026年九年级上学期化学期末考试试卷及答案(四)
- 2026年四川矿产机电技师学院招聘教师备考题库带答案详解
- 2026年绵阳市国资委社会化招聘机关工作人员的备考题库参考答案详解
- 2026年长江航运总医院招聘备考题库及一套完整答案详解
- 2026年岱山县青少年宫公开招聘编外人员备考题库及一套答案详解
- 2026年中国医学科学院医学实验动物研究所第三批公开招聘工作人员备考题库及完整答案详解1套
- 太上洞玄灵宝高上玉皇本行集经.经折装.清康熙五十一年内府刊本
- 2025年护理三基考试卷(含答案)
- 2025农资购买合同模板
- 2025年《肌肉骨骼康复学》期末考试复习参考题库(含答案)
- 除夕烟火秀活动方案
- 2025年自考14104人力资源管理(中级)模拟试题及答案
- 地理中国的工业+课件-2025-2026学年初中地理湘教版八年级上册
- 国企合作加盟合同范本
- 2025年企业员工激励机制管理模式创新研究报告
- 2025年广东省高中语文学业水平合格考试卷试题(含答案详解)
- 2025年广东省春季高考语文试卷(解析卷)
评论
0/150
提交评论