江苏省常州市14校联盟2026届数学高二上期末达标检测模拟试题含解析_第1页
江苏省常州市14校联盟2026届数学高二上期末达标检测模拟试题含解析_第2页
江苏省常州市14校联盟2026届数学高二上期末达标检测模拟试题含解析_第3页
江苏省常州市14校联盟2026届数学高二上期末达标检测模拟试题含解析_第4页
江苏省常州市14校联盟2026届数学高二上期末达标检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省常州市14校联盟2026届数学高二上期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线,且三个数1,,9成等比数列,则下列结论正确的是()A.的焦距为 B.的渐近线方程为C.的离心率为 D.的虚轴长为2.不等式的一个必要不充分条件是()A. B.C. D.3.等差数列中,若,,则等于()A. B.C. D.4.若数列的前n项和(n∈N*),则=()A.20 B.30C.40 D.505.椭圆与(0<k<9)的()A.长轴的长相等B.短轴的长相等C.离心率相等D.焦距相等6.已知数列是等比数列,,是函数的两个不同零点,则()A.16 B.C.14 D.7.将函数图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,再将所得图象向右平移个单位长度,得到函数的图象,则()A. B.C. D.8.已知三棱锥O­ABC,点M,N分别为AB,OC的中点,且,用表示,则等于()A. B.C. D.9.已知圆C的方程为,点P在圆C上,O是坐标原点,则的最小值为()A.3 B.C. D.10.抛物线y2=4x的焦点坐标是A.(0,2) B.(0,1)C.(2,0) D.(1,0)11.已知圆,圆相交于P,Q两点,其中,分别为圆和圆的圆心.则四边形的面积为()A.3 B.4C.6 D.12.若将双曲线绕其对称中心顺时针旋转120°后可得到某一函数的图象,且该函数在区间上存在最小值,则双曲线C的离心率为()A. B.C.2 D.二、填空题:本题共4小题,每小题5分,共20分。13.若,且,则的最小值是____________.14.已知函数在上单调递减,则的取值范围是______.15.如图的形状出现在南宋数学家杨辉所著的《算法九章·商功》中,后人称之为“三角垛”.已知某“三角垛”的最上层有1个球,第二层有3个球,第三层有6个球……设各层(从上往下)球数构成一个数列,则___________,___________.16.已知,若共线,m+n=__.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,中,且,将沿中位线EF折起,使得,连结AB,AC,M为AC的中点.(1)证明:平面ABC;(2)求二面角的余弦值.18.(12分)已知椭圆的两焦点为、,P为椭圆上一点,且(1)求此椭圆的方程;(2)若点P在第二象限,,求的面积19.(12分)已知直线经过点,且满足下列条件,求相应的方程.(1)过点;(2)与直线垂直.20.(12分)如图,在直三棱柱中,,,D为的中点(1)求证:平面;(2)求平面与平面的夹角的余弦值;(3)若E为的中点,求与所成的角21.(12分)已知抛物线的准线与轴的交点为.(1)求的方程;(2)若过点的直线与抛物线交于,两点.请判断是否为定值,若是,求出该定值;若不是,请说明理由.22.(10分)新冠肺炎疫情发生以来,我国某科研机构开展应急科研攻关,研制了一种新型冠状病毒疫苗,并已进入二期临床试验.根据普遍规律,志愿者接种疫苗后体内会产生抗体,人体中检测到抗体,说明有抵御病毒的能力.通过检测,用表示注射疫苗后的天数,表示人体中抗体含量水平(单位:,即:百万国际单位/毫升),现测得某志愿者的相关数据如下表所示:天数123456抗体含量水平510265096195根据以上数据,绘制了散点图.(1)根据散点图判断,与(a,b,c,d均为大于0的实数)哪一个更适宜作为描述y与x关系的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果求出y关于x的回归方程,并预测该志愿者在注射疫苗后的第10天的抗体含量水平值;(3)从这位志愿者前6天的检测数据中随机抽取4天的数据作进一步的分析,记其中的y值大于50的天数为X,求X的分布列与数学期望.参考数据:3.5063.673.4917.509.4912.95519.014023.87其中.参考公式:用最小二乘法求经过点,,,,的线性回归方程的系数公式,;.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】先求得的值,然后根据双曲线的知识对选项进行分析,从而确定正确答案.【详解】方程表示双曲线,则,成等比数列,则,所以双曲线方程为,所以,故双曲线的焦距为,A选项错误.渐近线方程为,B选项错误.离心率,C选项错误.虚轴长,D选项正确.故选:D2、B【解析】解不等式,由此判断必要不充分条件.【详解】,解得,所以不等式的一个必要不充分条件是.故选:B3、C【解析】由等差数列下标和性质可得.【详解】因为,,所以.故选:C4、B【解析】由前项和公式直接作差可得.【详解】数列的前n项和(n∈N*),所以.故选:B.5、D【解析】根据椭圆方程求得两个椭圆的,由此确定正确选项.【详解】椭圆与(0<k<9)的焦点分别在x轴和y轴上,前者a2=25,b2=9,则c2=16,后者a2=25-k,b2=9-k,则显然只有D正确故选:D6、B【解析】由题意得到,根据等比数列的性质得到,化简,即可求解.【详解】由,是函数的两个不同零点,可得,根据等比数列的性质,可得则.故选:B.7、A【解析】根据三角函数图象的变换,由逆向变换即可求解.【详解】由已知的函数逆向变换,第一步,向左平移个单位长度,得到的图象;第二步,图象上所有点的横坐标缩短到原来的,纵坐标不变,得到的图象,即的图象.故.故选:A8、D【解析】根据空间向量的加法、减法和数乘运算可得结果.【详解】.故选:D9、B【解析】化简判断圆心和半径,利用圆的性质判断连接线段OC,交圆于点P时最小,再计算求值即得结果.【详解】化简得圆C的标准方程为,故圆心是,半径,则连接线段OC,交圆于点P时最小,因为原点到圆心的距离,故此时.故选:B.10、D【解析】的焦点坐标为,故选D.【考点】抛物线的性质【名师点睛】本题考查抛物线的定义.解析几何是中学数学的一个重要分支,圆锥曲线是解析几何的重要内容,它们的定义、标准方程、简单几何性质是我们要重点掌握的内容,一定要熟记掌握11、A【解析】求得,由此求得四边形的面积.【详解】圆的圆心为,半径;圆的圆心为,所以,由、两式相减并化简得,即直线的方程为,到直线的距离为,所以,所以四边形的面积为.故选:A12、C【解析】由题意,可知双曲线的一条渐近线的倾斜角为120°,再确定参数的正负即可求解.【详解】双曲线,令,则,显然,则一条渐近线方程为,绕其对称中心顺时针旋转120°后可得到某一函数的图象,则渐近线就需要旋转到与坐标轴重合,故渐近线方程的倾斜角为120°,即,该函数在区间上存在最小值,可知,所以,所以.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】应用基本不等式“1”的代换求a+4b的最小值即可.【详解】由,有,则,当且仅当,且,即时等号成立,∴最小值为.故答案为:14、【解析】先求导,求出函数的单调递减区间,由即可求解.【详解】,令,得,即的单调递减区间是,又在上单调递减,可得,即.故答案为:.15、①.②.【解析】根据,,得到,利用累加法和等差数列求和公式求出,再利用裂项抵消法进行求和.【详解】因为,,,,,以上个式子累加,得,则;因为,所以.故答案为:,.16、【解析】根据空间向量平行的坐标运算求出m,n,进而求得答案.【详解】由于,因为,所以存在,使得,于是,则.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)由勾股定理以及等腰三角形的性质得出,,再由线面垂直的判定证明即可;(2)以点为坐标原点,建立空间直角坐标系,由向量法得出面面角.【小问1详解】设,则,,平面平面,连接,,,,,即又,平面ABC【小问2详解】,以点为坐标原点,建立如下图所示的空间直角坐标系设平面的法向量为,平面的法向量为,令,则同理可得,又二面角为钝角,故二面角的余弦值为.18、(1);(2).【解析】(1)由题可得,根据椭圆的定义,求得,进而求得的值,即可求解;(2)由题可得直线方程为,联立椭圆方程可得点P,利用三角形的面积公式,即求.【小问1详解】设椭圆的标准方程为,焦距为,由题可得,,所以,可得,即,则,所以椭圆的标准方程为【小问2详解】设点坐标为,,,∵,∴所在的直线方程为,则解方程组,可得,∴.19、(1)(2)【解析】(1)直接利用两点式写出直线的方程;(2)先求出直线的斜率,由点斜式写出直线的方程.【小问1详解】直线经过,两点,由两点式得直线的方程为.【小问2详解】与直线垂直直线的斜率为由点斜式得直线的方程为.20、(1)证明见解析(2)(3)【解析】(1)连接,交于O,连接OD,根据中位线的性质,可证,根据线面平行的判定定理,即可得证;(2)如图建系,求得各点坐标,进而可求得平面与平面法向量,根据二面角的向量求法,即可得答案;(3)求得坐标,根据线线角的向量求法,即可得答案.【小问1详解】连接,交于O,连接OD,则O为的中点,在中,因为O、D分别为、BC中点,所以,又因为平面,平面,所以平面【小问2详解】由题意得,两两垂直,以B为原点,为x,y,z轴正方向建系,如图所示:设,则,所以,则,,因为平面在平面ABC内,且平面ABC,所以即为平面的一个法向量,设平面的一个法向量为,则,所以,令,则,所以法向量,所以,由图象可得平面与平面的夹角为锐角,所以平面与平面的夹角的余弦值为【小问3详解】由(2)可得,设与所成的角为,则,解得,所以与所成的角为21、(1)(2)是定值,定值为【解析】(1)由抛物线的准线求标准方程;(2)直线与抛物线相交求定值,解联立方程消未知数,利用韦达定理,求线段长,再求它们的倒数的平方和.【小问1详解】由题意,可得,即,故抛物线的方程为.【小问2详解】为定值,且定值是.下面给出证明.证明:设直线的方程为,,,联立抛物线有,消去得,则,又,.得因此为定值,且定值是.22、(1)(2),4023.87(3)分布列答案见解析,数学期望:【解析】(1)由于这些点分布在一条曲线的附近,从而可选出回归方程,(2)设,,则建立w关于x的回归方程,然后根据公式和表中的数据求解回归方程即可,再将代入回归方程可求得在注射疫苗后的第10天的抗体含量水平值,(3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论