江苏省南京市江浦高级中学2026届高一数学第一学期期末联考模拟试题含解析_第1页
江苏省南京市江浦高级中学2026届高一数学第一学期期末联考模拟试题含解析_第2页
江苏省南京市江浦高级中学2026届高一数学第一学期期末联考模拟试题含解析_第3页
江苏省南京市江浦高级中学2026届高一数学第一学期期末联考模拟试题含解析_第4页
江苏省南京市江浦高级中学2026届高一数学第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省南京市江浦高级中学2026届高一数学第一学期期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列四组函数中,表示同一函数的一组是()A. B.C. D.2.袋中装有5个小球,颜色分别是红色、黄色、白色、黑色和紫色.现从袋中随机抽取3个小球,设每个小球被抽到的机会均相等,则抽到白球或黑球的概率为A. B.C. D.3.已知梯形ABCD是直角梯形,按照斜二测画法画出它的直观图A'B'C'D'(如图所示),其中A'D'=2,B'C'=4,A'B'=1,则直角梯形DC边的长度是A.5 B.2C.25 D.4.在试验“甲射击三次,观察中靶的情况”中,事件A表示随机事件“至少中靶1次”,事件B表示随机事件“正好中靶2次”,事件C表示随机事件“至多中靶2次”,事件D表示随机事件“全部脱靶”,则()A.A与C是互斥事件 B.B与C是互斥事件C.A与D是对立事件 D.B与D是对立事件5.已知函数的图象关于直线对称,则=A. B.C. D.6.已知函数,则的概率为A. B.C. D.7.函数的零点的个数为A. B.C. D.8.已知集合,,若,则的值为A.4 B.7C.9 D.109.已知,则的值是A.1 B.3C. D.10.甲、乙二人参加某体育项目训练,近期的八次测试得分情况如图,则下列结论正确的是()A.甲得分的极差大于乙得分的极差 B.甲得分的75%分位数大于乙得分的75%分位数C.甲得分的平均数小于乙得分的平均数 D.甲得分的标准差小于乙得分的标准差二、填空题:本大题共6小题,每小题5分,共30分。11.若存在常数和,使得函数和对其公共定义域上的任意实数都满足:和恒成立,则称此直线为和的“隔离直线”.已知函数,,若函数和之间存在隔离直线,则实数的取值范围是______12.若不等式的解集为,则不等式的解集为______.13.已知函数在区间上恰有个最大值,则的取值范围是_____14.已知函数是定义在R上的增函数,且,那么实数a的取值范围为________15.设函数f(x)=,则f(-1)+f(1)=______16.已知函数,若函数有三个零点,则实数的取值范围是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)若,求不等式的解集;(2)若,且,求的最小值18.已知为二次函数,且(1)求的表达式;(2)设,其中,m为常数且,求函数的最值19.某公司今年年初用万元收购了一个项目,若该公司从第年到第(且)年花在该项目的其他费用(不包括收购费用)为万元,该项目每年运行的总收入为万元(1)试问该项目运行到第几年开始盈利?(2)该项目运行若干年后,公司提出了两种方案:①当盈利总额最大时,以万元的价格卖出;②当年平均盈利最大时,以万元的价格卖出假如要在这两种方案中选择一种,你会选择哪一种?请说明理由20.近年来,手机逐渐改变了人们生活方式,已经成为了人们生活中的必需品,因此人们对手机性能的要求也越来越高.为了了解市场上某品牌的甲、乙两种型号手机的性能,现从甲、乙两种型号手机中各随机抽取了6部手机进行性能测评,得到的评分数据如下(单位:分):甲型号手机908990889192乙型号手机889189938594假设所有手机性能评分相互独立.(1)在甲型号手机样本中,随机抽取1部手机,求该手机性能评分不低于90分的概率;(2)在甲、乙两种型号手机样本中各抽取1部手机,求其中恰有1部手机性能评分不低于90分的概率;(3)试判断甲型号手机样本评分数据的方差与乙型号手机样本评分数据的方差的大小(只需写出结论)21.设为平面直角坐标系中的四点,且,,(1)若,求点的坐标及;(2)设向量,,若与平行,求实数的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】判断两函数定义域与函数关系式是否一致即可;【详解】解:.和的定义域都是,对应关系也相同,是同一函数;的定义域为,的定义域为,,定义域不同,不是同一函数;的定义域为,的定义域为,定义域不同,不是同一函数;的定义域为,的定义域为或,定义域不同,不是同一函数故选:2、D【解析】分析:先求对立事件的概率:黑白都没有的概率,再用1减得结果.详解:从袋中球随机摸个,有,黑白都没有只有种,则抽到白或黑概率为选点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.3、B【解析】根据斜二测画法,原来的高变成了45°方向的线段,且长度是原高的一半,∴原高为AB=2而横向长度不变,且梯形ABCD是直角梯形,∴DC=故选B4、C【解析】根据互斥事件、对立事件的定义即可求解.【详解】解:因为A与C,B与C可能同时发生,故选项A、B不正确;B与D不可能同时发生,但B与D不是事件的所有结果,故选项D不正确;A与D不可能同时发生,且A与D为事件的所有结果,故选项C正确故选:C.5、C【解析】因为函数的图象关于直线对称,所以,即,因此,选C.6、B【解析】由对数的运算法则可得:,当时,脱去符号可得:,解得:,此时;当时,脱去符号可得:,解得:,此时;据此可得:概率空间中的7个数中,大于1的5个数满足题意,由古典概型公式可得,满足题意的概率值:.本题选择B选项.7、B【解析】略【详解】因为函数单调递增,且x=3,y>0,x=1,y<0,所以零点个数为18、A【解析】可知,或,所以.故选A考点:交集的应用9、D【解析】由题意结合对数的运算法则确定的值即可.【详解】由题意可得:,则本题选择D选项.【点睛】本题主要考查指数对数互化,对数的运算法则等知识,意在考查学生的转化能力和计算求解能力.10、B【解析】根据图表数据特征进行判断即可得解.【详解】乙组数据最大值29,最小值5,极差24,甲组最大值小于29,最小值大于5,所以A选项说法错误;甲得分的75%分位数是20,,乙得分的75%分位数17,所以B选项说法正确;甲组具体数据不易看出,不能判断C选项;乙组数据更集中,标准差更小,所以D选项错误故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由已知可得、恒成立,可求得实数的取值范围.【详解】因为函数和之间存在隔离直线,所以,当时,可得对任意的恒成立,则,即,当时,可得对恒成立,令,则有对恒成立,所以或,解得或,综上所述,实数的取值范围是.故答案为:.12、【解析】由三个二次的关系求,根据分式不等式的解法求不等式的解集.【详解】∵不等式的解集为∴,是方程的两根,∴,∴可化为∴∴不等式的解集为,故答案为:.13、【解析】将代入函数解析式,求出的取值范围,根据正弦取8次最大值,求出的取值范围【详解】因为,,所以,又函数在区间上恰有个最大值,所以,得【点睛】三角函数最值问题要注意整体代换思想的体现,由的取值范围推断的取值范围14、【解析】利用函数单调性的定义求解即可.【详解】由已知条件得,解得,则实数的取值范围为.故答案为:.15、3【解析】直接利用函数的解析式,求函数值即可【详解】函数f(x)=,则==3故答案为3【点睛】本题考查分段函数的应用,函数值的求法,考查计算能力16、【解析】作出函数图象,进而通过数形结合求得答案.【详解】问题可以转化为函数的图象与直线有3个交点,如图所示:所以时满足题意.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)答案不唯一,具体见解析(2)【解析】(1)由,对分类讨论,判断与的大小,确定不等式的解集.(2)利用把用表示,代入表示为的函数,利用基本不等式可求.【详解】解:(1)因为,所以,由,得,即,当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为;(2)因为,由已知,可得,∴,∵,∴,∴,当且仅当时取等号,所以的最小值为【点睛】本题考查一元二次不等式的解法,基本不等式的应用,考查分类讨论的思想,运算求解能力,属于中档题.18、(1)(2);【解析】(1)利用待定系数法可求的表达式;(2)利用换元法结合二次函数的单调性可求函数的最值【小问1详解】设,因为,所以整理的,故有,即,所以.【小问2详解】,设,故又,∵,所以,在为增函数,∴即时,;即时,19、(1)第年(2)选择方案②,理由见解析【解析】(1)设项目运行到第年盈利为万元,可求得关于的函数关系式,解不等式可得的取值范围,即可得出结论;(2)计算出两种方案获利,结合两种方案的用时可得出结论.【小问1详解】解:设项目运行到第年的盈利为万元,则,由,得,解得,所以该项目运行到第年开始盈利【小问2详解】解:方案①,当时,有最大值即项目运行到第年,盈利最大,且此时公司总盈利为万元,方案②,当且仅当,即时,等号成立即项目运行到第年,年平均盈利最大,且此时公司的总盈利为万元.综上,两种方案获利相等,但方案②时间更短,所以选择方案②20、(1)2(2)1(3)甲型号手机样本评分数据的方差小于乙型号手机样本评分数据的方差.【解析】(1)由于甲型号手机样本中,得共有4部手机性能评分不低于90分,进而得其概率;(2)由于甲型号的手机有4部评分不低于90分,乙型号的手机有3部评分不低于90分,进而列举基本事件,根据古典概型求解即可;(3)根据表中数据的分散程度,估计比较即可.【小问1详解】解:根据表中数据,甲型号手机样本中,得共有4部手机性能评分不低于90分,所以随机抽取1部手机,求该手机性能评分不低于90分的概率为4【小问2详解】解:甲型号的手机有4部评分不低于90分,记为a,b,c,d,另外两部记为A,B乙型号的手机有3部评分不低于90分,记为x,y,z,另外三部记为1,2,3,所以甲、乙两种型号手机样本中各抽取1部手机,共有ax,ay,az,a1,a2,a3,bx,by,bz,b1,b2,b3,cx,cy,cz,c1,c2,c3,dx,dy,dz,d1,d2,d3,Ax,Ay,Az,A1,A2,A3,Bx,By,Bz,B1,B2,B3共36种,其中恰有1部手机性能评分不低于90分的基本事件有a

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论