版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省重点初中2026届高二上数学期末学业质量监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线:和:,若,则实数的值为()A. B.3C.-1或3 D.-12.已知向量,且与互相垂直,则k=()A. B.C. D.3.中国古代有一道数学题:“今有七人差等均钱,甲、乙均七十七文,戊、己、庚均七十五文,问戊、己各若干?”意思是甲、乙、丙、丁、戊、己、庚七个人分钱,所分得的钱数构成等差数列,甲、乙两人共分得77文,戊、己、庚三人共分得75文,则戊、己两人各分得多少文钱?则下列说法正确的是()A.戊分得34文,己分得31文 B.戊分得31文,己分得34文C.戊分得28文,己分得25文 D.戊分得25文,己分得28文4.已知数列是等差数列,为数列的前项和,,,则()A.54 B.71C.81 D.805.已知随机变量服从正态分布,且,则()A.0.1 B.0.2C.0.3 D.0.46.已知圆,直线,则直线l被圆C所截得的弦长的最小值为()A.2 B.3C.4 D.57.已知不等式解集为,下列结论正确的是()A. B.C D.8.已知f(x)是定义在R上的偶函数,当时,,且f(-1)=0,则不等式的解集是()A. B.C. D.9.已知函数对于任意的满足,其中是函数的导函数,则下列各式正确的是()A. B.C. D.10.下列命题中正确的是()A.若为真命题,则为真命题B.在中“”是“”的充分必要条件C.命题“若,则或”的逆否命题是“若或,则”D.命题,使得,则,使得11.已知等差数列的前项和为,若,则()A B.C. D.12.若函数f(x)=x2+x+1在区间内有极值点,则实数a的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.过圆上一点的圆的切线的一般式方程为________14.抛物线的准线方程是___________.15.将参加冬季越野跑的名选手编号为:,采用系统抽样方法抽取一个容量为的样本,把编号分为组后,第一组的到这个编号中随机抽得的号码为,这名选手穿着三种颜色的衣服,从到穿红色衣服,从到穿白色衣服,从到穿黄色衣服,则抽到穿白色衣服的选手人数为__________16.写出一个同时具有性质①②的函数___________.(不是常值函数),①为偶函数;②.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若,求的极值;(2)若有两个零点,求实数a取值范围.18.(12分)双曲线的离心率为2,经过C的焦点垂直于x轴的直线被C所截得的弦长为12.(1)求C的方程;(2)设A,B是C上两点,线段AB的中点为,求直线AB的方程.19.(12分)已知函数,且)的图象经过点和
.(1)求实数,的值;(2)若,求数列前项和
.20.(12分)已知直线,,分别求实数的值,使得:(1);(2);(3)与相交.21.(12分)已知函数(1)若函数的图象在点处的切线与平行,求b的值;(2)在(1)的条件下证明:22.(10分)已知数列满足,数列为等差数列,,前4项和.(1)求数列,的通项公式;(2)求和:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用两直线平行列式求出a值,再验证即可判断作答.【详解】因,则,解得或,当时,与重合,不符合题意,当时,,符合题意,所以实数的值为-1.故选:D2、C【解析】利用垂直的坐标表示列方程求解即可.【详解】由与互相垂直得,解得故选:C.3、C【解析】设甲、乙、丙、丁、戊、己、庚所分钱数分别为,,,,,,,再根据题意列方程组可解得结果.【详解】依题意,设甲、乙、丙、丁、戊、己、庚所分钱数分别为,,,,,,,则,解得,所以戊分得(文),己分得(文),故选:C.4、C【解析】利用等差数列的前n项和公式求解.【详解】∵是等差数列,,∴,得,∴.故选:C.5、A【解析】利用正态分布的对称性和概率的性质即可【详解】由,且则有:根据正态分布的对称性可知:故选:A6、C【解析】直线l过定点D(1,1),当时,弦长最短.【详解】由,圆心,半径,,由,故直线l过定点,∵,故D在圆C内部,直线l始终与圆相交,当时,直线l被圆截得的弦长最短,,弦长=.故选:C.7、C【解析】根据不等式解集为,得方程解为或,且,利用韦达定理即可将用表示,即可判断各选项的正误.【详解】解:因为不等式解集为,所以方程的解为或,且,所以,所以,所以,故ABD错误;,故C正确.故选:C.8、D【解析】根据题意可知,当时,,即函数在上单调递增,再结合函数f(x)的奇偶性得到函数的奇偶性,并根据奇偶性得到单调性,进而解得答案.【详解】由题意,当时,,则函数在上单调递增,而f(x)是定义在R上的偶函数,容易判断是定义在上的奇函数,于是在上单调递增,而f(-1)=0,则.于是当时,.故选:D.9、C【解析】令,结合题意可得,利用导数讨论函数的单调性,进而得出,变形即可得出结果.【详解】令,则,又,所以,令,令,所以函数在上单调递减,在单调递增,所以,即,则.故选:C10、B【解析】A选项,当一真一假时也满足条件,但不满足为真命题;B选项,可以使用正弦定理和大边对大角,大角对大边进行证明;C选项,利用逆否命题的定义进行判断,D选项,特称命题的否定,把存在改为任意,把结论否定,故可判断D选项.【详解】若为真命题,则可能均为真,或一真一假,则可能为真命题,也可能为假命题,故A错误;在中,由正弦定理得:,若,则,从而,同理,若,则由正弦定理得,,所以,故在中“”是“”的充分必要条件,B正确;命题“若,则或”的逆否命题是“若且,则”,故C错误;命题,使得,则,使得,故D错误.故选:B11、B【解析】利用等差数列的性质可求得的值,再结合等差数列求和公式以及等差中项的性质可求得的值.【详解】由等差数列的性质可得,则,故.故选:B.12、C【解析】若f(x)=x2+x+1在区间内有极值点,则f'(x)=x2-ax+1在区间内有零点,且零点不是f'(x)的图象顶点的横坐标.由x2-ax+1=0,得a=x+.因为x∈,y=x+的值域是,当a=2时,f'(x)=x2-2x+1=(x-1)2,不合题意.所以实数a的取值范围是,故选C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求出过切线的半径所在直线斜率,由垂直关系得切线斜率,然后得直线方程,现化为一般式【详解】圆心为,,所以切线的斜率为,切线方程为,即故答案为:【点睛】本题考查求过圆上一点的圆的切线方程,利用切线性质求得斜率后易得直线方程14、【解析】先根据抛物线方程求出,进而求出准线方程.【详解】抛物线为,则,解得:,准线方程为:.故答案为:15、【解析】,所以抽到穿白色衣服的选手号码为,共16、(答案不唯一)【解析】利用导函数周期和奇偶性构造导函数,再由导函数构造原函数列举即可.【详解】由知函数的周期为,则,同时满足为偶函数,所以满足条件.故答案为:(答案不唯一).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)极小值为,无极大值(2)【解析】(1)利用导数求出,分别令、,进而得到函数的单调区间,即可求出极值;(2)利用导数讨论、0时函数的单调性,进而得出函数的最小值小于0,解不等式即可.【小问1详解】函数的定义域为,时,.令,解得,∵在上,,在上,,∴在上单调递减,在上单调递增,∴的极小值为,无极大值.【小问2详解】,当时,,∴在上单调递增,此时不可能有2个零点.当0时.令,得,∵在上,,在上,),∴在上单调递减,在上单调递增,∴的最小值为.∵有两个零点,∴,即,∴.经验证,若,则,且,又,∴有两个零点.综上,a的取值范围是.18、(1)(2)【解析】(1)根据已知条件求得,由此求得的方程.(2)结合点差法求得直线的斜率,从而求得直线的方程.【小问1详解】因为C的离心率为2,所以,可得.将代入可得,由题设.解得,,,所以C的方程为.【小问2详解】设,,则,.因此,即.因为线段AB的中点为,所以,,从而,于是直线AB的方程是.19、(1),(2)【解析】(1)将A、B点坐标代入,计算求解,即可得答案.(2)由(1)可得解析式,即可得,利用分组求和法,结合等比数列的求和公式,即可得答案.【小问1详解】由已知,可得,所以,解得,
.【小问2详解】由(1)得,又,所以,故
.20、(1)或(2)或(3)且【解析】(1)根据直线一般式平行的条件列式计算;(2)根据直线一般式垂直的条件列式计算;(3)根据相交和平行的关系可得答案.【小问1详解】,,解得或又时,直线,,两直线不重合;时,直线,,两直线不重合;故或;【小问2详解】,,解得或;【小问3详解】与相交故由(1)得且.21、(1);(2)证明见解析.【解析】(1)由题意可得,从而可求出,(2)先构造函数,利用导数可求得对任意恒成立,对任意恒成立,从而将问题转化为只需证对任意恒成立,再次构造函数,利用导数求出其最大值小于等于即可【详解】(1)解:∵函数的图象在点处的切线与平行,∴,解得;证明:(2)由(1)得即对任意恒成立,令,则,∵当时,,∴函数在上单调递增,∵,∴对任意恒成立,即对任意恒成立,∴只需证对任意恒成立即可,即只需证对任意恒成立,令,则,由单调递减,且知,函数在上单调递增,在上单调递减,∴,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 云存储服务合同协议2026年存储
- 2026年医疗用地土地流转经营合同协议
- 2026年医药冷链仓库租赁合同
- 商铺租赁合同2026年税务承担
- 2026年2026年干货供应合同协议
- 家装修介绍教学课件
- 2026届新高考英语冲刺复习 读后续写-逆推
- 家政服务员安全卫生课件
- 家务培训课件
- 培训讲座心理课件
- 2025年宁波市数据局直属事业单位公开招聘工作人员笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 2025秋苏少版七年级上册美术期末测试卷(三套)
- 2026年及未来5年市场数据中国EPP保温箱行业市场调研及投资战略规划报告
- 2025锦泰财产保险股份有限公司招聘理赔管理岗等岗位54人(公共基础知识)综合能力测试题附答案解析
- 2025浙江宁波象山县水质检测有限公司招聘及对象笔试历年参考题库附带答案详解
- 光伏屋面施工专项安全方案
- 2026年黑龙江农业工程职业学院单招综合素质考试题库附答案
- 四川农商银行2026年校园招聘1065人考试题库附答案
- 2026年度交通运输部所属事业单位第三批统一公开招聘备考笔试试题及答案解析
- 2025秋学期六年级上册信息科技期末测试卷附答案(苏科版)
- 广西壮族自治区公安机关2026年人民警察特殊职位招聘195人备考题库及1套完整答案详解
评论
0/150
提交评论