版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届徐州市重点中学高一数学第一学期期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,且函数恰有三个不同的零点,则实数的取值范围是A. B.C. D.2.设函数,则下列结论错误的是()A.的一个周期为B.的图像关于直线对称C.的图像关于点对称D.在有3个零点3.设点分别是空间四边形的边的中点,且,,,则异面直线与所成角的正弦值是()A. B.C. D.4.等于A. B.C. D.5.已知函数,若对一切,都成立,则实数a的取值范围为()A. B.C. D.6.对于函数,,“”是“的图象既关于原点对称又关于轴对称”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.下列函数中,既是奇函数又在区间上是增函数的是()A. B.C. D.8.已知函数是定义在R上的偶函数,且,当时,,则在区间上零点的个数为()A.2 B.3C.4 D.59.函数的定义域为,且为奇函数,当时,,则函数的所有零点之和是()A.2 B.4C.6 D.810.设,,则a,b,c的大小关系是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在平面直角坐标系中,正三角形ABC的边BC所在直线的斜率是0,则AC,AB所在直线的斜率之和为________12.一条从西向东的小河的河宽为3.5海里,水的流速为3海里/小时,如果轮船希望用10分钟的时间从河的南岸垂直到达北岸,轮船的速度应为______;13.将函数的图象先向右平移个单位长度,得到函数________________的图象,再把图象上各点横坐标缩短到原来的(纵坐标不变),得到函数________________的图象14.函数的最小值为__________15.设是第三象限的角,则的终边在第_________象限.16.如图所示,正方体的棱长为,线段上有两个动点,且,则下列结论中正确的是_____①∥平面;②平面⊥平面;③三棱锥的体积为定值;④存在某个位置使得异面直线与成角°三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,,.当k为何值时:(1);(2).18.已知集合,.(1)求;(2)求.19.如图所示,正四棱锥中,为底面正方形的中心,侧棱与底面所成的角的正切值为(1)若是的中点,求异面直线与所成角的正切值(2)在棱上是否存在一点,使侧面,若存在,试确定点的位置;若不存在,说明理由20.已知函数,(1)求不等式的解集;(2)若有两个不同的实数根,求a的取值范围21.给出以下四个式子:①;②;③;④.(1)已知所给各式都等于同一个常数,试从上述四个式子中任选一个,求出这个常数;(2)分析以上各式的共同特点,写出能反应一般规律的等式,并对等式正确性作出证明.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】函数恰有三个不同的零点等价于与有三个交点,再分别画出和的图像,通过观察图像得出a的范围.【详解】解:方程所以函数恰有三个不同的零点等价于与有三个交点记,画出函数简图如下画出函数如图中过原点虚线l,平移l要保证图像有三个交点,向上最多平移到l’位置,向下平移一直会有三个交点,所以,即故选A.【点睛】本题考查了函数的零点问题,解决函数零点问题常转化为两函数交点问题2、D【解析】利用辅助角公式化简,再根据三角函数的性质逐个判断即可【详解】,对A,最小周期为,故也为周期,故A正确;对B,当时,为的对称轴,故B正确;对C,当时,,又为的对称点,故C正确;对D,则,解得,故在内有共四个零点,故D错误故选:D3、C【解析】取BD中点G,连结EG、FG∵△ABD中,E、G分别为AB、BD的中点∴EG∥AD且EG=AD=4,同理可得:FG∥BC且FG=BC=3,∴∠FEG(或其补角)就是异面直线AD与EF所成的角∵△FGE中,EF=5,EG=4,FG=3,∴EF2=25=EG2+FG2,得故答案为C.4、A【解析】分析:由条件利用诱导公式、两角和差的余弦公式化简所给的式子,可得结果.详解:.故选:A.点睛:本题主要考查诱导公式、两角和差的余弦公式的应用,属于基础题.5、C【解析】将,成立,转化为,对一切成立,由求解即可.【详解】解:因为函数,若对一切,都成立,所以,对一切成立,令,所以,故选:C【点睛】方法点睛:恒(能)成立问题的解法:若在区间D上有最值,则(1)恒成立:;;(2)能成立:;.若能分离常数,即将问题转化为:(或),则(1)恒成立:;;(2)能成立:;.6、C【解析】由函数奇偶性的定义求出的解析式,可得出结论.【详解】若函数的定义域为,的图象既关于原点对称又关于轴对称,则,可得,因此,“”是“的图象既关于原点对称又关于轴对称”的充要条件故选:C.7、B【解析】先由函数定义域,排除A;再由函数奇偶性排除D,最后根据函数单调性,即可得出B正确,C错误.【详解】A选项,的定义域为,故A不满足题意;D选项,余弦函数偶函数,故D不满足题意;B选项,正切函数是奇函数,且在上单调递增,故在区间是增函数,即B正确;C选项,正弦函数是奇函数,且在上单调递增,所以在区间是增函数;因此是奇函数,且在上单调递减,故C不满足题意.故选:B.【点睛】本题主要考查三角函数性质的应用,熟记三角函数的奇偶性与单调性即可,属于基础题型.8、C【解析】根据函数的周期性、偶函数的性质,结合零点的定义进行求解即可.【详解】因为,所以函数的周期为,当时,,即,因为函数是偶函数且周期为,所以有,所以在区间上零点的个数为,故选:C9、B【解析】根据题意可知图象关于点中心对称,由的解析式求出时的零点,根据对称性即可求出时的零点,即可求解.【详解】因为为奇函数,所以函数的图象关于点中心对称,将的图象向右平移个单位可得的图象,所以图象关于点中心对称,当时,,令解得:或,因为函数图象关于点中心对称,则当时,有两解,为或,所以函数的所有零点之和是,故选:B第II卷(非选择题10、C【解析】根据指数函数与对数函数的性质,求得的取值范围,即可求解.【详解】由对数的性质,可得,又由指数函数的性质,可得,即,且,所以.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、0【解析】由于正三角形的内角都为,且边BC所在直线的斜率是0,不妨设边AB所在直线的倾斜角为,则斜率为,则边AC所在直线的倾斜角为,斜率为,所以AC,AB所在直线的斜率之和为12、15海里/小时【解析】先求出船的实际速度,再利用勾股定理得到轮船的速度.【详解】设船的实际速度为,船速,水的流速,则海里/小时,∴海里/小时.故答案为:15海里/小时13、①.②.【解析】根据三角函数的图象变换可得变换后函数的解析式.【详解】由三角函数的图象变换可知,函数的图象先向右平移可得,再把图象上各点横坐标缩短到原来的(纵坐标不变)可得,故答案为:;14、【解析】所以,当,即时,取得最小值.所以答案应填:.考点:1、对数的运算;2、二次函数的最值.15、二或四【解析】根据是第三象限角,得到,,再得到,,然后讨论的奇偶可得答案.【详解】因为是第三象限角,所以,,所以,,当为偶数时,为第二象限角,当为奇数时,为第四象限角.故答案为:二或四.16、①②③④【解析】在①中,由EF∥BD,得EF∥平面ABCD;在②中,连接BD,由AC⊥BD,AC⊥DD1,可知AC⊥面BDD1B1,从而得到面ACF⊥平面BEF;在③中,三棱锥E﹣ABF的体积与三棱锥A﹣BEF的体积相等,从而三棱锥E﹣ABF的体积为定值;在④中,令上底面中心为O,得到存在某个位置使得异面直线AE与BF成角30°【详解】由正方体ABCD﹣A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F,且,知:在①中,由EF∥BD,且EF⊄平面ABCD,BD⊂平面ABCD,得EF∥平面ABCD,故①正确;在②中,连接BD,由AC⊥BD,AC⊥DD1,可知AC⊥面BDD1B1,而BE⊂面BDD1B1,BF⊂面BDD1B1,∴AC⊥平面BEF,∵AC⊂平面ACF,∴面ACF⊥平面BEF,故②正确;在③中,三棱锥E﹣ABF的体积与三棱锥A﹣BEF的体积相等,三棱锥A﹣BEF的底面积和高都是定值,故三棱锥E﹣ABF的体积为定值,故③正确;在④中,令上底面中心为O,当E与D1重合时,此时点F与O重合,则两异面直线所成的角是∠OBC1,可求解∠OBC1=300,故存在某个位置使得异面直线AE与BF成角30°,故④正确故答案为①②③④【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,属于中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或2;(2)【解析】(1)根据向量共线坐标公式列方程即可求解;(2)根据向量垂直坐标公式列方程即可求解【详解】(1)若,有,整理为解得或2;(2)若,有,整理为解得:18、(1)(2)【解析】(1)分别求两个集合,再求交集;(2)先求,再求.【小问1详解】,解得:,即,,解得:,即,;【小问2详解】,.19、(1);(2)为四等分点(靠近点A);答案见解析【解析】(1)取中点,连,,则可得为二面角的平面角,为侧棱与底面所成的角,连接,则,从而可得或其补角为异面直线与所成的角,进而可求得答案;(2)延长交于,取中点,连、,由线面垂直的判定可得平面,则平面平面,再由线面垂直的判定可得平面,取的中点,可证得四边形为平行四边形,所以,从而可得侧面【详解】解:(1)取中点,连,,因为正四棱锥中,为底面正方形的中心,所以面,则为二面角的平面角,为侧棱与底面所成的角,所以,连接,则,或其补角为异面直线与所成的角,因为,,,所以平面平面,所以,(2)延长交于,取中点,连、因为,,,故平面,因平面,故平面平面,又,,故为等边三角形,所以,由平面,故,因为,所以平面,取的中点,,四边形为平行四边形,所以,平面即为AD的四等分点(靠近点A)20、(1)(2)【解析】(1)利用三角恒等变换公式将化到最简形式,确定,在这个范围内解三角不等式即可;(2)确定在上的最值,根据有两个不同的实数根,得到a应满足的条件,解得答案.【小问1详解】原式化简后得,由,则∴,可得,即,故不等式的解集为【小问2详解】在上的单调递增区间为,单调递减区间为,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家长安全知识培训心得课件
- 家长安全会培训反思课件
- 2026年冷链提单质押合同
- 2026年无人机数据采集合同协议
- 2026年养殖技术服务合同
- 展销会合同2026年合同解除协议
- 2026年酒店住宿合同条款
- 2026年消防工程消防水源保障合同协议
- 2026年钢结构深化设计合同
- 2026年宠物营养师服务合同
- 商品混凝土实验室操作手册
- 资金调拨拆借管理制度
- 装饰装修工程监理月报
- 超星尔雅学习通《美的历程:美学导论(中国社会科学院)》2025章节测试附答案
- 教学课件-积极心理学(第2版)刘翔平
- 2019人教版高中物理必修第一册《第二章 匀变速直线运动的研究》大单元整体教学设计2020课标
- DGTJ 08-2176-2024 沥青路面预防养护技术标准(正式版含条文说明)
- DB33 802-2013 铝合金铸件可比单位综合能耗限额及计算方法
- 移植后免疫监测技术-洞察分析
- 《车用动力电池液冷板技术条件》
- 中国近代史纲要绍兴文理学院练习题复习资料
评论
0/150
提交评论