版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省醴陵市第四中学2026届高一上数学期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设分别是x轴和圆:(x-2)2+(y-3)2=1上的动点,且点A(0,3),则的最小值为()A. B.C. D.2.长方体的一个顶点上的三条棱长分别为3、4、5,且它的8个顶点都在同一个球面上,则这个球的表面积是()A. B.C. D.都不对3.函数的定义域为,且为奇函数,当时,,则函数的所有零点之和是()A.2 B.4C.6 D.84.已知全集,集合,,它们的关系如图(Venn图)所示,则阴影部分表示的集合为()A. B.C. D.5.要得到函数的图象,只需将函数的图象向()平移()个单位长度A.左 B.右C.左 D.右6.福州新港江阴港区地处福建最大海湾兴化湾西北岸,全年全日船泊进出港不受航道及潮水的限制,是迄今为止“我国少有、福建最佳”的天然良港.如图,是港区某个泊位一天中6时到18时的水深变化曲线近似满足函数,据此可知,这段时间水深(单位:m)的最大值为()A.5 B.6C.8 D.107.与直线垂直,且在轴上的截距为-2的直线方程为()A. B.C. D.8.在下列函数中,既是奇函数并且定义域为是()A. B.C. D.9.函数f(x)=ln(2x)-1的零点位于区间()A.(2,3) B.(3,4)C.(0,1) D.(1,2)10.设全集,集合,,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知角终边经过点,则___________.12.利用随机数表法对一个容量为90,编号为00,01,02,…,89的产品进行抽样检验,抽取一个容量为10的样本,若选定从第2行第3列的数开始向右读数(下面摘取了随机数表中的第1行至第5行),根据下图,读出的第3个数是___________.13.函数f(x)=+的定义域为____________14.若是第三象限的角,则是第________象限角;15.若点位于第三象限,那么角终边落在第___象限16.若命题,,则的否定为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合,集合,集合.(1)求;(2)若,求实数的值取范围.18.设全集为R,集合,(1)求;(2)求19.如图,在等腰梯形中,,(1)若与共线,求k的值;(2)若P为边上的动点,求的最大值20.上海市某地铁项目正在紧张建设中,通车后将给更多市民出行带来便利,已知该线路通车后,地铁的发车时间间隔t(单位:分钟)满足,,经测算,在某一时段,地铁载客量与发车时间间隔t相关,当时地铁可达到满载状态,载客量为1200人,当时,载客量会减少,减少的人数与的平方成正比,且发车时间间隔为2分钟时载客量为560人,记地铁载客量为.(1)求的解析式;(2)若该时段这条线路每分钟的净收益为(元),问当发车时间间隔为多少时,该时段这条线路每分钟的净收益最大?21.已知集合,集合(1)当时,求;(2)当时,求m的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】取点A关于x轴的对称点C(0,-3),得到,最小值为.故答案为B.点睛:这个题目考查的是直线和圆的位置关系,一般直线和圆的题很多情况下是利用数形结合来解决的,联立的时候较少;再者在求圆上的点到直线或者定点的距离时,一般是转化为圆心到直线或者圆心到定点的距离,再加减半径,分别得到最大值和最小值2、B【解析】由题意长方体的外接球的直径就是长方体的对角线,求出长方体的对角线,就是求出球的直径,然后求出球的表面积【详解】解:长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,所以长方体的对角线就是球的直径,长方体的对角线为:,所以球的半径为:;则这个球的表面积是:故选:3、B【解析】根据题意可知图象关于点中心对称,由的解析式求出时的零点,根据对称性即可求出时的零点,即可求解.【详解】因为为奇函数,所以函数的图象关于点中心对称,将的图象向右平移个单位可得的图象,所以图象关于点中心对称,当时,,令解得:或,因为函数图象关于点中心对称,则当时,有两解,为或,所以函数的所有零点之和是,故选:B第II卷(非选择题4、C【解析】根据所给关系图(Venn图),可知是求,由此可求得答案.【详解】根据题意可知,阴影部分表示的是,故,故选:C.5、C【解析】因为,由此可得结果.【详解】因为,所以其图象可由向左平移个单位长度得到.故选:C.6、C【解析】从图象中的最小值入手,求出,进而求出函数的最大值,即为答案.【详解】从图象可以看出,函数最小值为-2,即当时,函数取得最小值,即,解得:,所以,当时,函数取得最大值,,这段时间水深(单位:m)的最大值为8m.故选:C7、A【解析】先求出直线的斜率,再利用直线的点斜式方程求解.【详解】由题得所求直线的斜率为,∴所求直线方程为,整理为故选:A【点睛】方法点睛:求直线的方程,常用的方法:待定系数法,先定式(从直线的五种形式中选择一种作为直线的方程),后定量(求出直线方程中的待定系数).8、C【解析】分别判断每个函数的定义域和奇偶性即可.【详解】对A,的定义域为,故A错误;对B,是偶函数,故B错误;对C,令,的定义域为,且,所以为奇函数,故C正确.对D,的定义域为,故D错误.故选:C.9、D【解析】根据对数函数的性质,得到函数为单调递增函数,再利用零点的存在性定理,即可求解,得到答案.【详解】由题意,函数,可得函数为单调递增函数,且是连续函数又由f(1)=ln2-1<0,f(2)=ln4-1>0,根据函数零点的存在性定理可得,函数f(x)的零点位于区间(1,2)上故选D.【点睛】本题主要考查了函数的零点问题,其中解答中合理使用函数零点的存在性定理是解答此类问题的关键,着重考查了推理与运算能力,属于基础题.10、B【解析】先求出集合B,再根据交集补集定义即可求出.【详解】,,,.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据正切函数定义计算【详解】由题意故答案为:12、75【解析】根据随机数表法进行抽样即可.【详解】从随机数表的第2行第3列的数开始向右读数,第一个编号为62,符合;第二个编号为38,符合;第三个编号为97,大于89,应舍去;下一个编号为75,符合.所以读出的第3个数是:75.故答案为:75.13、【解析】根据题意,结合限制条件,解指数不等式,即可求解.【详解】根据题意,由,解得且,因此定义域为.故答案为:.14、一或三【解析】根据的范围求得的范围,从而确定正确答案.【详解】依题意,,,所以当为奇数时,在第三象限;当为偶数时,在第一象限.故答案:一或三15、四【解析】根据所给的点在第三象限,写出这个点的横标和纵标都小于0,根据这两个都小于0,得到角的正弦值小于0,余弦值大于0,得到角是第四象限的角【详解】解:∵点位于第三象限,∴sinθcosθ<02sinθ<0,∴sinθ<0,Cosθ>0∴θ是第四象限的角故答案为四【点睛】本题考查三角函数的符号,这是一个常用到的知识点,给出角的范围要求说出三角函数的符号,反过来给出三角函数的符号要求看出角的范围16、,【解析】利用特称命题的否定可得出结论.【详解】命题为特称命题,该命题的否定为“,”.故答案为:,.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或;(2).【解析】(1)根据一元二次不等式的解法求出集合、,即可求出;(2)由,可知,得到不等式组,即得.【小问1详解】∵,,,或,∴或;【小问2详解】∵,,由,得,,解得,∴实数的值取范围为.18、(1);(2)或.【解析】(1)根据给定条件利用交集的定义直接计算即可作答.(2)利用并集的定义求出,再借助补集的定义直接求解作答.【小问1详解】因为,,所以.【小问2详解】因为,,则,而全集为R,所以或.19、(1);(2)12【解析】(1)选取为基底,用基底表示其他向量后,由向量共线可得;(2)设,,求得,由函数知识得最大值【详解】(1)不共线,以它们为基底,由已知,又与共线,所以存在实数,使得,即,解得;(2)等腰梯形中,,,则,设,,则,,所以时,取得最大值12【点睛】关键点点睛:本题考查向量的共线,向量的数量积,解题关键是以为基底,其它向量都用基底表示,然后求解计算20、(1);(2)分钟.【解析】(1)时,求出正比例系数k,写出函数式即可得解;(2)求出每一段上的最大值,再比较大小即可得解.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医患关系失衡的原因探析
- 光纤传感技术前景
- 滑线生产安全标准讲解
- 环境安全风险防控讲解
- 七下地理会考试卷及答案
- 能源政策考试题库及答案
- 煤矿采矿考试题目及答案
- 历史初二月考试卷及答案
- 2024统编版三年级语文上册第八单元每课时汇编(含12个教案)
- 2024人教版八年级地理上册第四章《中国的经济发展》单元测试卷及答案(含两套题)
- 新生儿循环系统疾病护理
- T/CUPTA 010-2022共享(电)单车停放规范
- 福建省泉州市南安市2024-2025学年上学期七年级数学期末试卷(原卷版+解析版)
- 2024年征兵心理测试题目
- 输电线路安全课件
- 病区8S管理成果汇报
- 2025年华侨港澳台学生联招考试英语试卷试题(含答案详解)
- 无人机物流配送服务合同书
- 学生寒假离校安全主题班会
- DB33T 2455-2022 森林康养建设规范
- 广告宣传品实施供货方案
评论
0/150
提交评论