上海市上海外国语大学附属外国语学校2026届高一上数学期末联考试题含解析_第1页
上海市上海外国语大学附属外国语学校2026届高一上数学期末联考试题含解析_第2页
上海市上海外国语大学附属外国语学校2026届高一上数学期末联考试题含解析_第3页
上海市上海外国语大学附属外国语学校2026届高一上数学期末联考试题含解析_第4页
上海市上海外国语大学附属外国语学校2026届高一上数学期末联考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市上海外国语大学附属外国语学校2026届高一上数学期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设集合,则()A. B.C. D.2.已知函数,则函数的最小正周期为A. B.C. D.3.已知则()A. B.C. D.4.已知集合,,全集,则()A. B.C. D.I5.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.若直线与直线垂直,则()A.6 B.4C. D.7.已知是第二象限角,且,则()A. B.C. D.8.的值是A. B.C. D.9.函数的零点所在区间是()A B.C. D.10.已知函数的部分图象如图所示,则的值可以为A.1 B.2C.3 D.4二、填空题:本大题共6小题,每小题5分,共30分。11.如图,某化学实验室的一个模型是一个正八面体(由两个相同的正四棱锥组成,且各棱长都相等)若该正八面体的表面积为,则该正八面体外接球的体积为___________;若在该正八面体内放一个球,则该球半径的最大值为___________.12.圆的半径是6cm,则圆心角为30°的扇形面积是_________13.若扇形的面积为9,圆心角为2弧度,则该扇形的弧长为______14.如图,扇环ABCD中,弧,弧,,则扇环ABCD的面积__________15.已知函数若是函数的最小值,则实数a的取值范围为______16.若在幂函数的图象上,则______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.函数的部分图像如图所示(1)求的解析式;(2)已知函数求的值域18.如图5,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点.(Ⅰ)证明:CD⊥平面PAE;(Ⅱ)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积.19.已知集合,或(1)当时,求;(2)若,且“”是“”的充分不必要条件,求实数a的取值范围20.已知函数的图象过点(1)求的值并求函数的值域;(2)若关于的方程有实根,求实数的取值范围;(3)若为偶函数,求实数的值21.已知函数是定义在R上的奇函数,当时,(Ⅰ)求函数在R上的解析式;(Ⅱ)若,函数,是否存在实数m使得的最小值为,若存在,求m的值;若不存在,请说明理由

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据绝对值不等式的解法和二次函数的性质,分别求得集合,即可求解.【详解】由,解得,即,即,又由,即,所以.故选:D.2、C【解析】去绝对值符号,写出函数的解析式,再判断函数的周期性【详解】,其中,所以函数的最小正周期,选择C【点睛】本题考查三角函数最小正周期的判断方法,需要对三角函数的解析式整理后,根据函数性质求得3、D【解析】先利用同角三角函数基本关系式求出和,然后利用两角和的余弦公式展开代入即可求出cos(α+β)【详解】∵∴∴,∴,∴故选:D4、B【解析】根据并集、补集的概念,计算即可得答案.【详解】由题意得,所以故选:B5、A【解析】根据终边相同的角的三角函数值相等,结合充分不必要条件的定义,即可得到答案;【详解】,当,“”是“”的充分不必要条件,故选:A6、A【解析】由两条直线垂直的条件可得答案.【详解】由题意可知,即故选:A.7、B【解析】先由求出,再结合是第二象限角,求即可.【详解】∵∴,∵是第二象限角,∴,∴,故A,C,D错,B对,故选:B.8、B【解析】利用诱导公式求解.【详解】解:由诱导公式得,故选:B.9、C【解析】利用零点存在定理可得出结论.【详解】函数在上单调递增,因为,,,,所以,函数的零点所在区间是.故选:C.10、B【解析】由图可知,故,选.二、填空题:本大题共6小题,每小题5分,共30分。11、①.②.【解析】由已知求得正八面体的棱长为,进而求得,即知外接球的半径,进而求得体积;若球O在正八面体内,则球O半径的最大值为O到平面的距离,证得平面,再利用相似可知,即可求得半径.【详解】如图,记该八面体为,O为正方形的中心,则平面设,则,解得.在正方形中,,则在直角中,知,即正八面体外接球的半径为故该正八面体外接球的体积为.若球O在正八面体内,则球O半径的最大值为O到平面的距离.取的中点E,连接,,则,又,,平面过O作于H,又,,所以平面,又,,则,则该球半径的最大值为.故答案为:,12、3π【解析】根据扇形的面积公式即可计算.【详解】,.故答案为:3π.13、6【解析】先由已知求出半径,从而可求出弧长【详解】设扇形所在圆的半径为,因为扇形的面积为9,圆心角为2弧度,所以,得,所以该扇形的弧长为,故答案为:614、3【解析】根据弧长公式求出,,再由根据扇形的面积公式求解即可.【详解】设,因为弧,弧,,所以,,所以,,又扇形的面积为,扇形的面积为,所以扇环ABCD的面积故答案为:315、【解析】考虑分段函数的两段函数的最小值,要使是函数的最小值,应满足哪些条件,据此列出关于a的不等式,解得答案.【详解】要使是函数的最小值,则当时,函数应为减函数,那么此时图象的对称轴应位于y轴上或y轴右侧,即当时,,当且仅当x=1时取等号,则,解得,所以,故答案为:.16、27【解析】由在幂函数的图象上,利用待定系数法求出幂函数的解析式,再计算的值【详解】设幂函数,,因为函数图象过点,则,,幂函数,,故答案为27【点睛】本题主要考查了幂函数的定义与解析式,意在考查对基础知识的掌握情况,是基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据图像和“五点法”即可求出三角函数的解析式;(2)根据三角恒等变换可得,结合x的取值范围和正弦函数的性质即可得出结果.小问1详解】由图像可知的最大值是1,所以,当时,,可得,又,所以当时,有最小值,所以,解得,所以;【小问2详解】,由可得所以,所以.18、(1)证明略(2)【解析】(Ⅰ)要证平面,由已知平面,已经有,因此在直角梯形中证明即可,通过计算得,而是中点,则有;(Ⅱ)PB与平面ABCD所成的角是,下面关键是作出PB与平面PAE所成的角,由(Ⅰ)作,分别与相交于,连接,则是PB与平面PAE所成的角,由这两个角相等,可得,同样在直角梯形中可计算出,也即四棱锥P-ABCD的高,体积可得.另外也可建立空间直角坐标系,通过空间向量法求得结论,第(Ⅱ)小题中关键是求点的坐标,注意这里直线与平面所成的角相等转化为直线与平面的法向量的夹角相等试题解析:解法1(Ⅰ如图(1)),连接AC,由AB=4,,是的中点,所以所以而内的两条相交直线,所以CD⊥平面PAE(Ⅱ)过点B作由(Ⅰ)CD⊥平面PAE知,BG⊥平面PAE.于是为直线PB与平面PAE所成的角,且由知,为直线与平面所成的角由题意,知因为所以由所以四边形是平行四边形,故于是在中,所以于是又梯形的面积为所以四棱锥的体积为解法2:如图(2),以A为坐标原点,所在直线分别为建立空间直角坐标系.设则相关的各点坐标为:(Ⅰ)易知因为所以而是平面内的两条相交直线,所以(Ⅱ)由题设和(Ⅰ)知,分别是,的法向量,而PB与所成的角和PB与所成的角相等,所以由(Ⅰ)知,由故解得又梯形ABCD的面积为,所以四棱锥的体积为.考点:线面垂直的判断,棱锥的体积19、(1)(2)【解析】(1)首先得到集合,再根据交集的定义计算可得;(2)首先求出集合的补集,依题意可得是的真子集,即可得到不等式组,解得即可;【小问1详解】解:当时,,或,∴【小问2详解】解:∵或,∴,∵“”是“”的充分不必要条件,∴是的真子集,∵,∴,∴,∴,故实数的取值范围为20、(1)(2)(3)【解析】(1)函数图象过,代入计算可求出的值,结合对数函数的性质可求出函数的值域;(2)构造函数,求出它在上的值域,即可求出的取值范围;(3)利用偶函数的性质,即可求出【详解】(1)因为函数图象过点,所以,解得.则,因为,所以,所以函数的值域为.(2)方程有实根,即,有实根,构造函数,则,因为函数在R上单调递减,而在(0,)上单调递增,所以复合函数是R上单调递减函数所以在上,最小值,最大值为,即,所以当时,方程有实根(3),是R上的偶函数,则满足,即恒成立,则恒成立,则恒成立,即恒成立,故,则恒成立,所以.【点睛】本题考查了函数的奇偶性的应用,及对数函数的性质,属于中档题21、(Ⅰ);(Ⅱ)存在实数使得的最小值为【解析】Ⅰ根据奇函数的对称性进行转化求解即可Ⅱ求出的表达式,利用换元法转化为一元二次函数,通过讨论对称轴与区间的关系,判断最小值是否满足条件即可【详解】Ⅰ若,则,∵当时,且是奇函数,∴当时,,即当时,,则Ⅱ若,,设,∵,∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论