2026届安徽省滨湖寿春中学高二上数学期末学业质量监测模拟试题含解析_第1页
2026届安徽省滨湖寿春中学高二上数学期末学业质量监测模拟试题含解析_第2页
2026届安徽省滨湖寿春中学高二上数学期末学业质量监测模拟试题含解析_第3页
2026届安徽省滨湖寿春中学高二上数学期末学业质量监测模拟试题含解析_第4页
2026届安徽省滨湖寿春中学高二上数学期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届安徽省滨湖寿春中学高二上数学期末学业质量监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.命题“存在,”的否定是()A.存在, B.存在,C.对任意, D.对任意,2.已知点是点在坐标平面内的射影,则点的坐标为()A. B.C. D.3.已知点,,则经过点且经过线段AB的中点的直线方程为()A. B.C. D.4.抛物线上的一点到其焦点的距离等于()A. B.C. D.5.下列函数求导错误的是()A.B.C.D.6.已知直线和互相平行,则实数的取值为()A或3 B.C. D.1或7.已知直线与圆相切,则的值是()A. B.C. D.8.已知数列{}满足,则()A. B.C. D.9.已知圆的方程为,圆的方程为,其中.那么这两个圆的位置关系不可能为()A.外离 B.外切C.内含 D.内切10.已知函数满足对于恒成立,设则下列不等关系正确是()A. B.C. D.11.有一个圆锥形铅垂,其底面直径为10cm,母线长为15cm.P是铅垂底面圆周上一点,则关于下列命题:①铅垂的侧面积为150cm2;②一只蚂蚁从P点出发沿铅垂侧面爬行一周、最终又回到P点的最短路径的长度为cm.其中正确的判断是()A.①②都正确 B.①正确、②错误C.①错误、②正确12.已知曲线,下列命题错误的是()A.若,则是椭圆,其焦点在轴上B.若,则是圆,其半径为C.若,则是双曲线,其渐近线方程为D.若,,为上任意一点,,为曲线的两个焦点,则二、填空题:本题共4小题,每小题5分,共20分。13.双曲线上一点P到的距离最小值为___________.14.设直线,直线,若,则_______.15.已知双曲线的渐近线上两点A,B的中点坐标为(2,2),则直线AB的斜率是_________.16.若x,y满足约束条件,则的最大值为_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率为,右焦点到上顶点的距离为.(1)求椭圆的方程;(2)斜率为2的直线经过椭圆的左焦点,且与椭圆相交于两点,求的面积.18.(12分)如图,在正四棱柱中,是上的点,满足为等边三角形.(1)求证:平面;(2)求点到平面的距离.19.(12分)已知直线,,分别求实数的值,使得:(1);(2);(3)与相交.20.(12分)在中,内角的对边分别是,且(1)求角的大小(2)若,且,求的面积21.(12分)已知为数列的前项和,且(1)求数列的通项公式;(2)若,求数列的前项和(3)设,若不等式对一切恒成立,求实数取值范围22.(10分)已知点,直线,圆.(1)若连接点与圆心的直线与直线垂直,求实数的值;(2)若直线与圆相交于两点,且弦的长为,求实数的值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】特称命题的否定:将存在改任意并否定原结论,即可知正确答案.【详解】由特称命题的否定为全称命题,知:原命题的否定为:对任意,.故选:D2、D【解析】根据空间中射影的定义即可得到答案.【详解】因为点是点在坐标平面内的射影,所以的竖坐标为0,横、纵坐标与A点的横、纵坐标相同,所以点的坐标为.故选:D3、C【解析】求AB的中点坐标,根据直线所过的两点坐标求直线方程即可.【详解】由已知,AB中点为,又,∴所求直线斜率为,故直线方程为,即故选:C.4、C【解析】由点的坐标求得参数,再由焦半径公式得结论【详解】由题意,解得,所以,故选:C5、C【解析】每一个选项根据求导公式及法则来运算即可判断.【详解】对于A,,正确;对于B,,正确;对于C,,不正确;对于D,,正确.故选:C6、B【解析】利用两直线平行的等价条件求得实数m的值.【详解】∵两条直线x+my+6=0和(m﹣2)x+3y+2m=0互相平行,∴解得m=﹣1,故选B【点睛】已知两直线的一般方程判定两直线平行或垂直时,记住以下结论,可避免讨论:已知,,则,7、D【解析】直线与圆相切,直接通过求解即可.【详解】因为直线与圆相切,所以圆心到直线的距离,所以,.故选:D8、B【解析】先将通项公式化简然后用裂项相消法求解即可.【详解】因为,.故选:B9、C【解析】求出圆心距的取值范围,然后利用圆心距与半径的和差关系判断.【详解】由两圆的标准方程可得,,,;则,所以两圆不可能内含.故选:C.10、A【解析】由条件可得函数为上的增函数,构造函数,利用函数单调性比较的大小,再根据函数的单调性确定各选项的对错.【详解】设,则,∵,∴,∴函数在上为增函数,∵,∴,故,所以,C错,令(),则,当时,,当时,∴函数在区间上为增函数,在区间上为减函数,又,∴,∴,即,∴,故,所以,D错,,故,所以,A对,,故,所以,B错,故选:A.11、C【解析】根据圆锥的侧面展开图为扇形,由扇形的面积公式计算即可判断①,在展开图中可知沿着爬行即为最短路径,计算即可判断②.【详解】直径为10cm,母线长为15cm.底面圆周长为.将其侧面展开后得到扇形半径为cm,弧长为,则扇形面积为,①错误.将其侧面展开,则爬行最短距离为,由弧长公式得展开后扇形弧度数为,作,,又,,cm,②正确.故选:C12、D【解析】根据椭圆和双曲线的性质以及定义逐一判断即可.【详解】曲线,若,则是椭圆,其焦点在轴上,故A正确;若,则,即是圆,半径为,故B正确;若,则是双曲线,当,则渐近线方程为,当,则渐近线方程为,故C正确;若,,则是双曲线,其焦点在轴上,由双曲线的定义可知,,故D错误;故选:D二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】设出点P的坐标,利用两点间距离公式结合二次函数求出最小值即可作答.【详解】设,则,即,于是得,而,则当时,,所以双曲线上一点P到的距离最小值为2.故答案为:214、##0.5【解析】根据两直线平行可得,,即可求出【详解】依题可得,,解得故答案为:15、##【解析】设出直线的方程,通过联立直线的方程和渐近线的方程,结合中点的坐标来求得直线的斜率.【详解】双曲线,,渐近线方程为,设直线的方程为,,由,由,所以,所以直线的斜率是.故答案为:16、3【解析】根据题意,画出可行域,找出最优解,即可求解.【详解】根据题意,不等式组所表示的可行域如图阴影部分,由图易知,取最大值的最优解为,故.故答案为:3三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)由题可得,即求;(2)由题可设直线方程,联立椭圆方程,利用韦达定理法结合三角形面积公式即求.【小问1详解】由题意可得,解得,所以椭圆的方程为.【小问2详解】解法一:由(1)得,则由题意可设直线,代入椭圆方程整理可得,设,则,则由弦长公式知,又设到的距离为,则由点到直线距离公式可得,的面积,即所求面积为.解法二:由(1)得,则由题意可设直线,即代入椭圆方程整理可得,设,则,,则的面积,即所求面积为.18、(1)证明见解析;(2).【解析】(1)根据题意证明,,然后根据线面垂直的判定定理证明问题;(2)结合(1),进而利用等体积法求得答案.【小问1详解】由题意,,为等边三角形,,∵平面ABCD,∴,则,即为中点.连接,∵平面,平面,∴,易得,则,又,于是,即,同理,即,又平面.【小问2详解】设M到平面的距离为d,,∴.易得,取BD的中点N,连接,则,所以,,所以,,.即M到平面的距离为1.19、(1)或(2)或(3)且【解析】(1)根据直线一般式平行的条件列式计算;(2)根据直线一般式垂直的条件列式计算;(3)根据相交和平行的关系可得答案.【小问1详解】,,解得或又时,直线,,两直线不重合;时,直线,,两直线不重合;故或;【小问2详解】,,解得或;【小问3详解】与相交故由(1)得且.20、(1);(2)【解析】(1)根据,通过余弦定理求解.(2)根据,通过正弦定理,把角转化为边得,再根据,得.再代入的面积公式求解.【详解】(1)∵,∴由余弦定理得,又,∴.(2)∵,∴由正弦定理得,∵,∴,又,∴∴面积【点睛】本题主要考查余弦定理和正弦定理的应用,还考查了运算求解的能力,属于中档题.21、(1);(2);(3).【解析】(1)利用的关系,根据等比数列的定义求通项公式.(2)由(1)可得,应用裂项相消法求.(3)应用错位相减法求得,由题设有,讨论为奇数、偶数求的取值范围【小问1详解】当时,,可得,当时,,可得,∴是首项、公比都为的等比数列,故.【小问2详解】由(1),,∴.【小问3详解】由题设

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论