版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届安徽巢湖市高二上数学期末监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知定义域为R的函数f(x)不是偶函数,则下列命题一定为真命题的是()A.∀x∈R,f(-x)≠f(x)B.∀x∈R,f(-x)≠-f(x)C∃x0∈R,f(-x0)≠f(x0)D.∃x0∈R,f(-x0)≠-f(x0)2.已知两条异面直线的方向向量分别是,,则这两条异面直线所成的角满足()A. B.C. D.3.某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是.A.90 B.75C.60 D.454.在三棱锥中,,,,若,,则()A. B.C. D.5.函数的定义域是,,对任意,,则不等式的解集为()A. B.C.或 D.或6.若方程表示焦点在y轴上的双曲线,则k的取值范围是()A. B.C. D.7.已知双曲线的右焦点为,渐近线为,,过的直线与垂直,且交于点,交于点,若,则双曲线的离心率为()A. B.C.2 D.8.已知为坐标原点,点的坐标为,点的坐标满足,则的最小值为()A B.C. D.49.设是等比数列,则“对于任意的正整数n,都有”是“是严格递增数列”()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.已知为两条不同的直线,为两个不同的平面,则下列结论正确的是()A.若,则B.若,则C.若,则D.若,则11.下列四个命题中,为真命题的是()A.若a>b,则ac2>bc2B.若a>b,c>d,则a﹣c>b﹣dC.若a>|b|,则a2>b2D.若a>b,则12.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,他所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,而是逐项差数之差或者高次差相等.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有一个高阶等差数列,其前7项分别为1,5,11,21,37,61,95,则该数列的第8项为()A.99 B.131C.139 D.141二、填空题:本题共4小题,每小题5分,共20分。13.阿波罗尼斯与阿基米德、欧几里得被称为亚历山大时期的数学三巨匠.“阿波罗尼斯圆”是他的代表成果之一:平面上动点P到两定点A,B的距离之比满足(且,t为常数),则点的轨迹为圆.已知在平面直角坐标系中,,,动点P满足,则P点的轨迹为圆,该圆方程为_________;过点的直线交圆于两点,且,则_________14.展开式中,各项系数之和为1,则实数_______.(用数字填写答案)15.已知焦点为F的抛物线的方程为,点Q的坐标为,点P在抛物线上,则点P到y轴的距离与到点Q的距离的和的最小值为______.16.已知直线l1:(1)x+y﹣2=0与l2:(1)x+ay﹣4=0平行,则a=_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)物联网(Internetofthings)是一个基于互联网、传统电信网等信息承载体,让所有能够被独立寻址的普通物理对象实现互联互通的网络,具有十分广阔的市场前景.现有一家物流公司计划租地建造仓库存储货物,经过市场调查了解到下列信息:仓库每月土地占地费(单位:万元)与仓库到车站的距离x(单位:千米)之间的关系为,每月库存货物费(单位:万元)与x之间的关系为:;若在距离车站11.5千米建仓库,则和分别为4万元和23万元.(1)求的值;(2)这家公司应该把仓库建在距离车站多少千米处,才能使两项费用之和最小?最小费用是多少?18.(12分)已知抛物线的准线方程是.(Ⅰ)求抛物线的方程;(Ⅱ)设直线与抛物线相交于,两点,为坐标原点,证明:.19.(12分)在空间直角坐标系Oxyz中,O为原点,已知点,,,设向量,.(1)求与夹角的余弦值;(2)若与互相垂直,求实数k的值.20.(12分)某班名学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是、、、.(1)估计该班本次测试的平均分;(2)在、中按分层抽样的方法抽取个数据,再从这个数据中任抽取个,求抽出个中至少有个成绩在中的概率.21.(12分)已知椭圆过点,且离心率.(1)求椭圆C的标准方程;(2)若动点在椭圆上,且在第一象限内,点分别为椭圆的左、右顶点,直线分别与椭圆C交于点,过作直线的平行线与椭圆交于点,问直线是否过定点,若经过定点,求出该定点的坐标;若不经过定点,请说明理由.22.(10分)已知函数.(1)求函数在处的切线方程;(2)求函数在区间上的最大值与最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用偶函数的定义和全称命题的否定分析判断解答.【详解】∵定义域为R的函数f(x)不是偶函数,∴∀x∈R,f(-x)=f(x)为假命题,∴∃x0∈R,f(-x0)≠f(x0)为真命题.故选C【点睛】本题主要考查偶函数的定义和全称命题的否定,意在考查学生对该知识的理解掌握水平,属于基础题.2、D【解析】利用向量夹角余弦公式直接求解【详解】解:两条异面直线的方向向量分别是,,这两条异面直线所成的角满足:,,故选:D3、A【解析】样本中产品净重小于100克的频率为(0.050+0.100)×2=0.3,频数为36,∴样本总数为.∵样本中净重大于或等于98克并且小于104克的产品的频率为(0.100+0.150+0.125)×2=0.75,∴样本中净重大于或等于98克并且小于104克的产品的个数为120×0.75=90.考点:频率分布直方图.4、B【解析】根据空间向量的基本定理及向量的运算法则计算即可得出结果.【详解】连接,因为,所以,因为,所以,所以,故选:B5、A【解析】构造函数,结合已知条件可得恒成立,可得为上的减函数,再由,从而将不等式转换为,根据单调性即可求解.【详解】构造函数,因为,所以为上的增函数又因为,所以原不等式转化为,即,解得.所以原不等式的解集为,故选:A.6、B【解析】由条件可得,即可得到答案.【详解】方程表示焦点在y轴上的双曲线所以,即故选:B7、C【解析】由题设易知是的中垂线,进而可得,结合双曲线参数关系及离心率公式求双曲线的离心率即可.【详解】由题意,是的中垂线,故,由对称性得,则,故,∴.故选:C.8、B【解析】由数量积的坐标运算求得,令,化为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案【详解】解:根据题意可得,、,所以,令,由约束条件作出可行域如下图所示,由得,即,由,得,由图可知,当直线过时,直线在轴上的截距最小,有最小值为,即,所以故选:B9、C【解析】根据严格递增数列定义可判断必要性,分类讨论可判断充分性.【详解】若是严格递增数列,显然,所以“对于任意的正整数n,都有”是“是严格递增数列”必要条件;对任意的正整数n都成立,所以中不可能同时含正项和负项,,即,或,即,当时,有,即,是严格递增数列,当时,有,即,是严格递增数列,所以“对于任意的正整数n,都有”是“是严格递增数列”充分条件故选:C10、D【解析】根据空间里面直线与平面、平面与平面位置关系的相关定理逐项判断即可.【详解】A,若,则或异面,故该选项错误;B,若,则或相交,故该选项错误;C,若,则α,β不一定垂直,故该选项错误;D,若,则利用面面垂直的性质可得,故该选项正确.故选:D.11、C【解析】利用不等式的性质结合特殊值法依次判断即可【详解】当c=0时,A不成立;2>1,3>-1,而2-3<1-(-1),故B不成立;a=2,b=1时,,D不成立;由a>|b|知a>0,所以a2>b2,C正确故选:C12、D【解析】根据题中所给高阶等差数列定义,找出其一般规律即可求解.【详解】设该高阶等差数列的第8项为,根据所给定义,用数列的后一项减去前一项得到一个数列,得到的数列也用后一项减去前一项得到一个数列,即得到了一个等差数列,如图:由图可得,则.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、①.②.【解析】设,根据可得圆的方程,利用垂径定理可求.【详解】设,则,整理得到,即.因为,故为的中点,过圆心作的垂线,垂足为,则为的中点,则,故,解得,故答案为:,.14、【解析】通过给二项式中的赋值1求出展开式的各项系数和,即可求出详解】解:令,得各项系数之和为,解得故答案为:15、##【解析】利用定义将所求距离之和的最小值问题,转化为的最小值问题.【详解】焦点F坐标为,抛物线准线为,如图,作垂直于准线于A,交y轴于B,.故答案为:16、2【解析】根据两直线平行的充要条件求解【详解】因为已知两直线平行,所以,解得故答案为:【点睛】本题考查两直线平行的充要条件,两直线平行的充要条件是,或,在均不为0时,用表示容易理解与记忆三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)这家公司应该把仓库建在距离车站多少千米处,才能使两项费用之和最小,最小费用是万元【解析】(1)将题中数据代入解析式可求;(2)利用基本不等式可求解.【小问1详解】由题意,,当时,,,解得.【小问2详解】设两项费用之和为(单位:万元),则.因为,所以,所以,当且仅当时等号成立,解得.所以这家公司应该把仓库建在距离车站多少千米处,才能使两项费用之和最小,最小费用是万元.18、(Ⅰ)(Ⅱ)详见解析【解析】(Ⅰ)利用排趋性的准线方程求出p,即可求解抛物线的方程;(Ⅱ)直线y=k(x-2)(k≠0)与抛物线联立,通过韦达定理求解直线的斜率关系即可证明OM⊥ON试题解析:(Ⅰ)解:因为抛物线的准线方程为,所以,解得,所以抛物线的方程为.(Ⅱ)证明:设,.将代入,消去整理得.所以.由,,两式相乘,得,注意到,异号,所以.所以直线与直线的斜率之积为,即.考点:直线与抛物线的位置关系;抛物线的标准方程19、(1)(2)【解析】(1)由向量的坐标先求出,,,由向量的夹角公式可得答案.(2)由题意可得,从而求出参数的值【小问1详解】由题,,,故,,,所以故与夹角余弦值为.【小问2详解】由与的互相垂直知,,,即20、(1);(2).【解析】(1)将每个矩形底边的中点值乘以对应矩形的面积,再将所得结果全部相加可得的值;(2)分析可知,所抽取的个数据中,成绩在内的有个,分别记为、、、,成绩在内的有个,分别记为、,列举出所有的基本事件,并确定所求事件所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【小问1详解】解:由频率分布直方图可得.【小问2详解】解:因为数学成绩在、内的频率分别为、,所以,所抽取的个数据中,成绩在内的有个,分别记为、、、,成绩在内的有个,分别记为、,从这个数据中,任取抽取个,所有的基本事件有:、、、、、、、、、、、、、、,共个,其中,事件“抽出个中至少有个成绩在中”所包含的基本事件有:、、、、、、、、,共个,故所求概率为.21、(1)(2)过定点,【解析】(1)根据椭圆上的点及离心率求出a,b即可;(2)设点,设直线的方程为,联立方程,得到根与系数的关系,利用条件化简,结合椭圆
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人借款合同2026年合同备案版
- 2026年口腔诊所环保检测合同协议
- 2026年旅游度假酒店管理合同
- 2026年电商直播推广合同协议
- 2026年进口海鲜食材采购合同协议
- 2026年家庭油烟管道专业清洗合同
- 自媒体运营合同2026年数据监测协议
- 2026年软件定制开发合同协议
- 2026年服装仓储分拣服务合同
- 家用吊机安全常识培训课件
- 校长在食堂从业人员培训会上的讲话
- (高清版)DBJ∕T 13-91-2025 《福建省房屋市政工程安全风险分级管控与隐患排查治理标准》
- 美育视域下先秦儒家乐教思想对舞蹈教育的当代价值研究
- 运输企业隐患排查奖惩制度
- 学堂在线 雨课堂 学堂云 工程伦理2.0 章节测试答案
- 生态旅游区建设场地地质灾害危险性评估报告
- 网络传播法规(自考14339)复习题库(含答案)
- 广东省江门市蓬江区2025年七年级上学期语文期末考试试卷及答案
- 苏州市施工图无障碍设计专篇参考样式(试行)2025
- 2024中国人形机器人产业发展蓝皮书1
- 社会工作项目调研方案含问卷及访谈提纲
评论
0/150
提交评论