版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025-2026北师大版数学七年级上册期末练习满分120分时间120分钟一、选择题:本题共10小题,每小题3分,共30分.在每小题给出的选项中,只有一项是符合题目要求的.1.截至年月日上线天,日活跃用户数达到万,这一数字已超过豆包的日活跃用户数,稳居我国应用活跃度榜首.将万用科学记数法表示应为()A. B.C. D.【答案】D【解析】【分析】此题考查科学记数法的表示方法.表示时关键要正确确定的值以及的值.科学记数法的表示形式为的形式,其中为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数:当原数的绝对值时,是负数.【详解】解:∵2215万,∴2215万.故选:D.2.下列图形旋转一周,能得到如图几何体的是()A. B. C. D.【答案】A【解析】【分析】根据面动成体,判断出各个选项旋转得到的立体图,即可得出结论.【详解】A.旋转一周可得本题的几何体,故选项正确,符合题意;B.旋转一周为两个圆锥结合体,故选项错误,不符合题意;C.旋转一周为圆锥和圆柱的结合体,故选项错误,不符合题意;D.旋转一周为两个圆锥和一个圆柱的结合体,故选项错误,不符合题意;故选:A.【点睛】此题考查了面动成体,解题的关键是要有空间想象能力,熟悉并判断出旋转后的立体图形.3.在,,,四个有理数中,比小的数是()A.4 B. C.1 D.【答案】B【解析】【分析】此题主要考查了有理数大小比较,解答此题的关键是掌握有理数大小比较法则.有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数比较大小,绝对值大的其值反而小,据此判断即可.【详解】解:∵,∴,∴比小的数是,故选:B.4如果,并且,那么()A., B.,C., D.,【答案】A【解析】【分析】本题考查有理数的乘法和加法法则.由可知和同号;再由可排除都为正的情况,从而确定和均为负.【详解】解:∵,∴和同号(即都为正或都为负).∵,若且,则,与条件矛盾,∴且.故选:A.5.多项式按字母的降幂排列正确的是()A. B.C. D.【答案】D【解析】【分析】根据题目要求先按字母的降幂排列的出结果,然后选项.【详解】多项式按字母的降幂排列:,故选:.【点睛】本题主要考查了多项式,掌握多项式的有关定义是解题关键.6.在下列说法中①表示负数;②近似数2.5万精确到十分位;③若,则;④的系数是;⑤是二次三项式;⑥若,则;⑦已知有理数在数轴上的位置如图所示,且,则.正确的个数有()A.0个 B.1个 C.2个 D.3个【答案】C【解析】【分析】本题主要考查了数轴、化简绝对值、相反数、近似数、单项式与多项式等知识,熟练掌握相关知识是解题关键.根据数轴、化简绝对值、相反数、近似数、单项式与多项式相关知识,逐一分析判断即可.【详解】解:①不一定表示负数,如时,,为正数,故原说法错误;②近似数25万精确到千位,故原说法错误;③若,则不一定,如,而,故原说法错误;④的系数是,故原说法错误;⑤是二次三项式,该说法正确;⑥若,则,故原说法错误;⑦已知有理数在数轴上的位置如图所示,且,则有,∴,则,该说法正确.故选:C.7.如图,线段,点为线段上一点,,点分别为和的中点,则线段的长为()A. B. C. D.【答案】C【解析】【分析】本题考查了线段的和差,线段中点的定义,由线段的和差可得,由线段中点的定义得,,,进而根据线段的和差关系即可求解,正确识图是解题的关键.【详解】解:∵,,∴,∵点分别为和的中点,∴,,∴,故选:.8.下列方程中是一元一次方程的是()A. B. C. D.【答案】D【解析】【分析】根据一元一次方程的定义逐项判定即可.【详解】解:A、未知数的最高次数2次,不是一元一次方程,故本选项不合题意;B、含有两个未知数,不是一元一次方程,故本选项不合题意;C、不是整式方程,故本选项不合题意;D、是一元一次方程,故本选项符合题意;故选:D.【点睛】本题考查一元一次方程,解题的关键是正确运用一元一次方程的定义:只含有一个未知数(元),且未知数的次数是1,这样的整式方程叫一元一次方程.9.如图,甲、乙两人同时从地出发,沿图示方向分别步行前进到B,C两地,测得,地位于地的北偏东方向,则地位于地的()A.东偏南方向 B.东偏南方向 C.南偏东方向 D.南偏东方向【答案】D【解析】【分析】此题主要考查了方向角,方向角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向.直接根据题意得出各角度数,进而结合方向角表示方法得出答案.【详解】解:如图所示:由题意可得:,,则,故C位于A地的南偏东.故选:D.10.定义一种关于整数的“”运算:(1)当是奇数时,结果为;(2)当是偶数时,结果是(其中是使为奇数的正整数),并且运算重复进行.例如:取,第一次经运算是29,第二次经运算是92,第三次经运算是23,第四次经运算是若,则第2025次经运算的结果是()A.6 B.7 C.8 D.9【答案】C【解析】【分析】本题主要考查了数字类的规律探索,计算出前五次经“”运算后的结果,可得规律从第二次经“”运算后,运算的结果每2次为一个循环,结果为1、8依次出现,据此规律求解即可.【详解】解:由题意可知:时,第一次经“”运算是,第二次经“”运算是,第三次经“”运算是,第四次经“”运算是,第五次经“”运算是,……由此可知,从第二次经“”运算后,运算的结果每2次为一个循环,结果为1、8依次出现,∵第2025次运算结果8.故选:C.二、填空题:本题共5小题,每小题3分,共15分.11.下列各数:,其中非负数有____________个.【答案】3【解析】【分析】本题主要考查了有理数的分类,乘方和绝对值计算,化简多重符号,先计算乘方和绝对值以及化简多重符号,再根据非负数是大于等于0的数即可得到答案.详解】解:,在中,非负数有,共3个,故答案为:3.12.已知a是最大的负整数的相反数,,且.式子的值为__________.【答案】5或1##1或5【解析】【分析】根据有理数的概念求出,根据绝对值的性质求出的值,再根据非负数的性质列方程求解即可得到,将的值代入代数式进行计算即可得解.【详解】解:是最大的负整数的相反数,,,或,或,,解得,或,或值为5或1故答案为:5或1【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0,还考查了绝对值的性质和有理数的概念.13.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为__________.(可不化简)【答案】【解析】【分析】设这种自行车每辆的进价是元,一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,可列方程.【详解】设这种自行车每辆的进价是元,
.
故答案为:.【点睛】本题考查了列一元一次方程解应用题,关键是知道利润=售价-进价,根据题目中所获得的利润可列方程求解.14.如图,射线是的平分线,射线是的平分线,.若,则的度数为_______.【答案】【解析】【分析】本题主要考查了角的计算,以及角的平分线定义,关键是注意分析角之间的和差关系.首先设,,再根据角平分线性质可得,再根据角的和差关系可得,进而得到,再解方程即可得到,进而得到答案【详解】解:设,.则.是的平分线,,,,,解得,,是的平分线,,,故答案为:.15.在同一平面内.O为直线AB上一点.射线OE将平角∠AOB分成∠AOE、∠BOE两部分.已知∠BOE=α.OC为∠AOE的平分线.∠DOE=90°.则∠COD=______(用含有α的代数式表示)【答案】或【解析】【分析】分两种情况:射线OD、OE在直线AB的同侧;射线OD、OE在直线AB的异侧;利用角平分线的定义、互补、角的和差关系即可求得结果.【详解】①当射线OD、OE在直线AB的同侧时,如图所示∵OC为∠AOE的平分线∴∠1=∠2∵∠AOE+∠BOE=180°,∠BOE=α∴∠AOE=180°−α∴∴②当射线OD、OE在直线AB的异侧时,如图所示∵OC为∠AOE的平分线∴∠1=∠2∵∠AOE+∠BOE=180°,∠BOE=α∴∠AOE=180°−α∴∴综上所述,∠COD=或.故答案为:或【点睛】本题考查了角平分线的定义,互补的定义,角的和差关系等知识,要根据题意画出图形,并注意分类讨论.三、解答题:本题共8小题,共75分.16.(1)计算:.(2)解方程.【答案】(1);(2)【解析】【分析】本题考查了含乘方的有理数混合运算,解一元一次方程,灵活运用运算法则是解题的关键.(1)先算乘方、括号里的,并将除法变形为乘法运算,最后计算加减运算即可.(2)按照去分母、去括号、移项、合并同类项、系数化为,依次计算即可.【详解】解:(1).(2),去分母得,去括号得,移项、合并同类项得,系数化为得.17.先化简,再求值,其中.【答案】化简结果为:,原式=-7【解析】【详解】试题分析:先根据两个非负数的和为0则这两个数都为0求出x、y的值,然后先去掉小括号,再去掉中括号,合并同类项后,代入x、y的值计算即可.试题解析:解:∵|x+1|+(y-2)2=0,∴x+1=0,y-2=0,解得:x=-1,y=2,4x2y-[6xy-3(4xy-2)-x2y]+1=4x2y-[6xy-12xy+6-x2y]+1=4x2y-6xy+12xy-6+x2y+1=5x2y+6xy-5,当x=-1,y=2时,原式=5×(-1)2×2+6×(-1)×2-5=10-12-5=-7.18.某几何体由棱长均为1的小立方块搭成,从上面看到的该几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数.(1)请分别在网格中画出从正面、左面看到的该几何体的形状图(用签字笔将对应的虚线描为实线即可);(2)如果在该几何体上添加若干同样大小的小立方块得到一个新几何体,且新几何体与原几何体从上面、正面、左面看到的形状图分别相同,那么最多可以再添加几个小立方块?在这样的条件下,当添加最多的小立方块时,求新几何体的体积.【答案】(1)见解析(2)最多添加2个小立方块;此时新几何体的体积为12【解析】【分析】本题考查从不同方向看几何体.由从上面看及小正方形内的数字,可知从正面看的列数与从上面看的列数相同,且每列小正方形数目为从上面看中该列小正方形数字中的最大数字.左视图的列数与从上面看的行数相同,且每列小正方形数目为从上面看中相应行中正方形数字中的最大数字.(1)由已知条件可知,从正面看有3列,每列小正方数形数目分别为3,2,3;从左面看有3列,每列小正方形数目分别为3,3,2.据此可画出图形;(2)根据从正面看和从上面看的定义可得答案.【小问1详解】解:如图所示:【小问2详解】解:如图所示,如果在该几何体上添加若干同样大小的小立方块得到一个新几何体,且新几何体与原几何体从上面、正面、左面看到的形状图分别相同,最多可以再添加2个小立方块.此时新几何体的体积为:.19.为加强未成年人思想道德建设.某校在学生中开展了“日行一孝”活动.活动设置了四个爱心项目:A项﹣我为父母过生日,B项﹣我为父母洗洗脚,C项﹣我当一天小管家,D项﹣我与父母谈谈心,要求每个学生必须且只能选择一项参加.为了解全校参加各项目的学生人数,随机抽取了部分学生进行调查,根据调查结果,绘制成如下两幅不完整的统计图,请根据所给信息,解答下列问题:(1)这次抽样调查的样本容量是,补全图1中的条形统计图.(2)在图2的扇形统计图中,B项所占的百分比为m%,则m的值为,C项所在扇形的圆心角α的度数为度.(3)该校参加活动的学生共1200人,请估计该校参加D项的学生有多少人?【答案】(1)200;图见解析;(2)20;162;(3)360.【解析】【分析】(1)根据题意可以求得调查的总人数,从而可以求得B的人数,进而可以将条形统计图补充完整;(2)根据统计图可以得到调查的总人数,也可以得到C部分所占的圆心角;(3)根据统计图可以求得1200人参加D项的学生的人数.【详解】解:(1)这次抽样调查的样本容量是=200(人),B的人数200﹣90﹣60﹣10=40,如图所示:(2)B项所占的百分比为m%,则m%的值为=20%,C项所在扇形的圆心角α的度数为360°×45%=162°;(3)1200人参加D项的学生的人数为1200××100%=360(人);故答案为200;20;162;360.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.20.某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过时,按2元计费;月用水量超过时,其中的仍按2元/收费,超过部分按元计费,设每户家庭用水量为.(1)当时,应收水费为___________元;当时,应收水费为___________元(均用含x的式子表示).(2)小明家第二季度用水量的情况如下:小明家这个季度共缴纳水费多少元?月份四五六用水量/203642【答案】(1)2x;()(2)小明家这个季度共缴纳水费205元【解析】【分析】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.本题的关键是水费要分段付费.(1)当时,按2元/计算,水费为元;当时,其中的仍按2元/计算,超过部分按元/计算,水费为元;(2)由题意得四月份用水量按2元/计费、五月份和六月份的用水量按(2)的结果计费,然后把三个月的水费相加即可.【小问1详解】解:当时,按2元/计算,水费为元,当时,水费为元.故答案为:;;【小问2详解】解:当时当时,;当时(元).答:小明家这个季度共缴纳水费205元21.如图,直线、相交于点O,,平分.(1)若,求的度数;(2)若,请直接写出的度数;(3)观察(1)(2)的结果,猜想和的数量关系,并说明理由.【答案】(1)(2)(3),理由见解析【解析】【分析】本题考查了几何图形中的角度计算,邻补角以及对顶角,熟练掌握基础知识点是解本题的关键.(1)根据可得、,然后根据对顶角相等进而得出答案;(2)同(1)中计算即可;(3)根据邻补角以及对顶角的性质结合角平分线的定义进行解答即可.【小问1详解】解:∵,,∴、,∵平分,∴,∴,∴;【小问2详解】∵,,∴、,∵平分,∴,∴,∴;【小问3详解】根据题意:,即.22.已知在数轴上有,两点,点表示的数为,点在点的左边,且,若有一动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,动点从点出发,以每秒个单位长度的速度沿着数轴向右匀速运动,设运动的时间为秒.(1)写出数轴上点,所表示的数(用含的代数式表示).(2)若点,分别从,两点同时出发,则点运动多少秒时,与点相距个单位长度?(3)若为的中点,为的中点,当点在线段上运动的过程中,探索线段与线段的数量关系是_________.(请直接写出答案)【答案】(1)点表示的数是,点表示的数是(2)点运动秒或秒时,与点相距个单位长度(3)或【解析】【分析】本题考查了用数轴上的点表示有理数,一元一次方程的应用,数轴上两点之间的距离,线段之间的数量关系,解题的关键是根据题意画出图形,注意分情况进行讨论.(1)根据点的运动方式即可得出点、表示的数;(2)根据、两点的表示的数,可表示出,令列出方程求解即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年产业经济学与政府规制政策试题含答案
- 聚甲基丙烯酸甲酯(PMMA)装置操作工创新思维知识考核试卷含答案
- 水盆工安全操作竞赛考核试卷含答案
- 2025年同心县事业单位考试真题
- 催化剂试验工安全培训效果竞赛考核试卷含答案
- 计算机及外部设备装配调试员安全教育强化考核试卷含答案
- 充电式工具电池组合装配工岗前生产安全培训考核试卷含答案
- 病毒性疫苗生产工安全生产意识竞赛考核试卷含答案
- 经编机操作工风险评估模拟考核试卷含答案
- 支护锚喷工岗前操作规范考核试卷含答案
- 设计团队介绍
- 中燃气计量管理制度
- 天然气公司输配管理制度
- 2026届高考生物一轮复习:人教版(2019)选择性必修3《生物技术与工程》必背知识点考点提纲
- 2025年连云港市中考生物试卷真题(含答案)
- 物流行业项目实施的协调措施
- 2025年上海市各区初三二模语文试题汇编《说明文阅读》
- 母牛出租合同协议
- 2025年结算工作总结
- 燃气管道施工事故应对方案
- 采购体系管理
评论
0/150
提交评论