2026年中考数学模拟试卷试题汇编-函数基础知识_第1页
2026年中考数学模拟试卷试题汇编-函数基础知识_第2页
2026年中考数学模拟试卷试题汇编-函数基础知识_第3页
2026年中考数学模拟试卷试题汇编-函数基础知识_第4页
2026年中考数学模拟试卷试题汇编-函数基础知识_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第1页(共1页)2026年中考数学模拟试卷试题汇编——函数基础知识一.选择题(共10小题)1.下列各图能表示y是x的函数是()A. B. C. D.2.在圆的周长C=2πR中,常量与变量分别是()A.2是常量,C、π、R是变量 B.2π是常量,C、R是变量 C.C、2是常量,R是变量 D.2是常量,C、R是变量3.函数y=2-x+1A.x≤2 B.x=3 C.x<2且x≠3 D.x≤2且x≠34.李师傅到单位附近的加油站加油,如图是所用的加油机上的数据显示牌,则其中的常量是()A.金额 B.数量 C.单价 D.金额和数量5.如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P点经过的路程为x,以点A、P、D为顶点的三角形的面积是y,则下列图象能大致反映y与x的函数关系的是()A. B. C. D.6.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长度恰好为24米.要围成的菜园是如图所示的长方形ABCD.设BC边的长为x米,AB边的长为y米,则y与x之间的函数关系式是()A.y=-12x+12 B.y=﹣2x+24 C.y=2x﹣24 D.y=7.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min后回家,图中的折线段OA﹣AB﹣BC是她出发后所在位置离家的距离s(km)与行走时间t(min)之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是()A. B. C. D.8.一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()A. B. C. D.9.小华和小明是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公共汽车到了学校,如图是他们从家到学校已走的路程S(米)和所用时间t(分钟)的关系图,则下列说法中错误的是()A.小明家和学校距离1200米 B.小华乘公共汽车的速度是240米/分 C.小华乘坐公共汽车后7:50与小明相遇 D.小明从家到学校的平均速度为80米/分10.如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC沿着直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A. B. C. D.二.填空题(共5小题)11.一慢车和一快车沿相同路线从A地到B地,所行的路程与时间的图象如图,则慢车比快车早出发小时,快车追上慢车行驶了千米,快车比慢车早小时到达B地.12.甲、乙两人以相同路线前往距离单位10km的培训中心参加学习.图中l甲、l乙分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了8km后遇到甲;④乙出发6分钟后追上甲.其中正确的有(填所有正确的序号).13.如图,长方形ABCD中,AB=5,AD=3,点P从点A出发,沿长方形ABCD的边逆时针运动,设点P运动的距离为x;△APC的面积为y,如果5<x<8,那么y关于x的函数关系式为.14.如图①,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止,设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图②所示,则矩形MNPQ的面积是.15.甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中:①甲队每天挖100米;②乙队开挖两天后,每天挖50米;③甲队比乙队提前3天完成任务;④当x=2或6时,甲乙两队所挖管道长度都相差100米.正确的有.(在横线上填写正确的序号)三.解答题(共5小题)16.星期天,玲玲骑自行车到郊外游玩,她离家的距离与时间的关系如图所示,请根据图象回答下列问题.(1)玲玲到达离家最远的地方是什么时间?离家多远?(2)她何时开始第一次休息?休息了多长时间?(3)她骑车速度最快是在什么时候?车速多少?(4)玲玲全程骑车的平均速度是多少?17.甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,甲、乙两人间的距离为s(km)与甲行驶的时间为t(h)之间的关系如图所示.(1)以下是点M、点N、点P所代表的实际意义,请将M、N、P填入对应的横线上.①甲到达终点.②甲乙两人相遇.③乙到达终点.(2)AB两地之间的路程为千米;(3)求甲、乙各自的速度;(4)甲出发h后甲、乙两人相距180千米;18.李大爷按每千克2.1元批发了一批黄瓜到镇上出售,为了方便,他带了一些零钱备用.他先按市场售出一些后,又降低出售.售出黄瓜千克数x与他手中持有的钱数y元(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)李大爷自带的零钱是多少?(2)降价前他每千克黄瓜出售的价格是多少?(3)卖了几天,黄瓜卖相不好了,随后他按每千克下降1.6元将剩余的黄瓜售完,这时他手中的钱(含备用的钱)是530元,问他一共批发了多少千克的黄瓜?(4)请问李大爷亏了还是赚了?若亏(赚)了,亏(赚)多少钱?19.快车与慢车分别从甲乙两地同时出发,匀速而行,快车到达乙地后停留1h,然后按原路原速返回,快车比慢车晚1h到达甲地,快慢两车距各自出发地的路程y(km)与所用的时x(h)的关系如图所示.(1)甲乙两地之间的路程为km;快车的速度为km/h;慢车的速度为km/h;(2)出发h,快慢两车距各自出发地的路程相等;(3)快慢两车出发h相距150km.20.某中学的小明和朱老师一起到一条笔直的跑道上锻炼身体,到达起点后小明做了一会准备活动朱老师先跑,当小明出发时,朱老师已经距起点200米了,他们距起点的距离s(米)与小明出发的时间t(秒)之间的关系如图所示(不完整).根据图中给出的信息,解答下列问题:(1)在上述变化过程中,自变量是,因变量是;(2)朱老师的速度为米/秒;小明的速度为米/秒;(3)小明与朱老师相遇次,相遇时距起点的距离分别为米.

2026年中考数学模拟试卷试题汇编——答案一.选择题(共10小题)题号12345678910答案DBACBABADA一.选择题(共10小题)1.下列各图能表示y是x的函数是()A. B. C. D.【考点】函数的概念.【答案】D【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此对各选项分析判断后利用排除法求解.【解答】解:A、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故A选项错误;B、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故B选项错误;C、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故C选项错误;D、对于x的每一个取值,y都有唯一确定的值与之对应关系,所以y是x的函数,故D选项正确.故选:D.【点评】本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.2.在圆的周长C=2πR中,常量与变量分别是()A.2是常量,C、π、R是变量 B.2π是常量,C、R是变量 C.C、2是常量,R是变量 D.2是常量,C、R是变量【考点】常量与变量.【专题】符号意识.【答案】B【分析】根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量,即可答题.【解答】解:∵在圆的周长公式C=2πR中,C与R是改变的,π是不变的;∴变量是C,R,常量是2π.故选:B.【点评】本题考查了常量与变量的知识,属于基础题,变量是指在程序的运行过程中随时可以发生变化的量.3.函数y=2-x+1A.x≤2 B.x=3 C.x<2且x≠3 D.x≤2且x≠3【考点】函数自变量的取值范围.【专题】函数思想.【答案】A【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:2﹣x≥0且x﹣3≠0,解得:x≤2.故选:A.【点评】考查了函数自变量的范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.李师傅到单位附近的加油站加油,如图是所用的加油机上的数据显示牌,则其中的常量是()A.金额 B.数量 C.单价 D.金额和数量【考点】常量与变量.【答案】C【分析】根据常量与变量的定义即可判断.【解答】解:常量是固定不变的量,变量是变化的量,单价是不变的量,而金额是随着数量的变化而变化,故选:C.【点评】本题考查常量与变量,解题的关键是正确理解常量与变量,本题属于基础题型.5.如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P点经过的路程为x,以点A、P、D为顶点的三角形的面积是y,则下列图象能大致反映y与x的函数关系的是()A. B. C. D.【考点】动点问题的函数图象.【答案】B【分析】根据动点从点A出发,首先向点D运动,此时y不随x的增加而增大,当点P在DC上运动时,y随着x的增大而增大,当点P在CB上运动时,y不变,据此作出选择即可.【解答】解:当点P由点A向点D运动,即0<x≤4时,y的值为0;当点P在DC上运动,即4<x≤8时,y随着x的增大而增大;当点P在CB上运动,即8<x≤12时,y不变;当点P在BA上运动,即12<x≤16时,y随x的增大而减小.故选:B.【点评】本题考查了动点问题的函数图象,解决动点问题的函数图象问题关键是发现y随x的变化而变化的趋势.6.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长度恰好为24米.要围成的菜园是如图所示的长方形ABCD.设BC边的长为x米,AB边的长为y米,则y与x之间的函数关系式是()A.y=-12x+12 B.y=﹣2x+24 C.y=2x﹣24 D.y=【考点】函数关系式.【答案】A【分析】根据题意可得2y+x=24,继而可得出y与x之间的函数关系式.【解答】解:由题意得:2y+x=24,故可得:y=-12x+12(0<x故选:A.【点评】此题考查了根据实际问题列一次函数关系式的知识,属于基础题,解答本题关键是根据三边总长应恰好为24米,列出等式.7.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min后回家,图中的折线段OA﹣AB﹣BC是她出发后所在位置离家的距离s(km)与行走时间t(min)之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是()A. B. C. D.【考点】函数的图象.【答案】B【分析】根据给定s关于t的函数图象,分析AB段可得出该段时间蕊蕊妈妈绕以家为圆心的圆弧进行运动,由此即可得出结论.【解答】解:观察s关于t的函数图象,发现:在图象AB段,该时间段蕊蕊妈妈离家的距离相等,即绕以家为圆心的圆弧进行运动,∴可以大致描述蕊蕊妈妈行走的路线是B.故选:B.【点评】本题考查了函数的图象,解题的关键是分析函数图象的AB段.本题属于基础题,难度不大,解决该题型题目时,根据函数图象分析出大致的运动路径是关键.8.一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()A. B. C. D.【考点】函数的图象.【答案】A【分析】分别求出甲乙两人到达C地的时间,再结合已知条件即可解决问题.【解答】解;由题意,甲走了1小时到了B地,在B地休息了半个小时,2小时正好走到C地,乙走了53小时到了C地,在C地休息了1由此可知正确的图象是A.故选:A.【点评】本题考查函数图象、路程.速度、时间之间的关系,解题的关键是理解题意求出两人到达C地的时间,属于中考常考题型.9.小华和小明是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公共汽车到了学校,如图是他们从家到学校已走的路程S(米)和所用时间t(分钟)的关系图,则下列说法中错误的是()A.小明家和学校距离1200米 B.小华乘公共汽车的速度是240米/分 C.小华乘坐公共汽车后7:50与小明相遇 D.小明从家到学校的平均速度为80米/分【考点】函数的图象.【专题】特定专题;能力层次.【答案】D【分析】根据已知信息和函数图象的数据,一次解答每个选项【解答】解:由图象可知,小华和小明的家离学校1200米,故A正确;根据图象,小华乘公共汽车,从出发到达学校共用了13﹣8=5(分钟),所以公共汽车的速度为1200÷5=240(米/分),故B正确;小明先出发8分钟然后停下来吃早餐,由图象可知在小明吃早餐的过程中,小华出发并与小明相遇然后超过小明,所以二人相遇所用的时间是8+480÷240=10(分钟),即7:50相遇,故C正确;小明从家到学校的时间为20分钟,所以小明的平均速度为1200÷20=60(米/分),故D错误.故选:D.【点评】本题考查的是一次函数图象的综合应用,利用已知信息和图象所给的数据分析题意,依次解答.10.如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC沿着直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A. B. C. D.【考点】动点问题的函数图象.【专题】二次函数图象及其性质;二次函数的应用;模型思想.【答案】A【分析】分为0<x≤2、2<x≤4两种情况,然后依据等边三角形的性质和三角形的面积公式可求得y与x的函数关系式,于是可求得问题的答案.【解答】解:如图1所示:当0<x≤2时,过点G作GH⊥BF于H.∵△ABC和△DEF均为等边三角形,∴△GEJ为等边三角形.∴GH=32EJ=∴y=12EJ•GH=3当x=2时,y=3如图2所示:2<x≤4时,过点G作GH⊥BF于H.y=12FJ•GH=34(4﹣故选:A.【点评】本题主要考查的是动点问题的函数图象,求得函数的解析式是解题的关键.二.填空题(共5小题)11.一慢车和一快车沿相同路线从A地到B地,所行的路程与时间的图象如图,则慢车比快车早出发2小时,快车追上慢车行驶了276千米,快车比慢车早4小时到达B地.【考点】函数的图象.【答案】见试题解答内容【分析】根据横纵坐标的意义,分别分析得出即可.【解答】解:由图象直接可得出:一慢车和一快车沿相同路线从A地到B地,所行的路程与时间的图象如图,则慢车比快车早出发2小时,快车追上慢车行驶了276千米,快车比慢车早4小时到达B地.故答案为:2,276,4.【点评】此题主要考查了函数图象,从图象上获取正确的信息是解题关键.12.甲、乙两人以相同路线前往距离单位10km的培训中心参加学习.图中l甲、l乙分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了8km后遇到甲;④乙出发6分钟后追上甲.其中正确的有①②④(填所有正确的序号).【考点】函数的图象.【专题】图表型.【答案】见试题解答内容【分析】观察函数图象可知,函数的横坐标表示时间,纵坐标表示路程,然后根据图象上特殊点的意义进行解答.【解答】解:①乙在28分时到达,甲在40分时到达,所以乙比甲提前了12分钟到达;故①正确;②根据甲到达目的地时的路程和时间知:甲的平均速度=10÷4060=15千米/④设乙出发x分钟后追上甲,则有:1028-18×x=1040×(18+x),解得x③由④知:乙第一次遇到甲时,所走的距离为:6×1028-18=6km所以正确的结论有三个:①②④,故答案为:①②④.【点评】本题考查了函数的图象,函数的图象时首先要理解横纵坐标表示的含义,理解问题叙述的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.13.如图,长方形ABCD中,AB=5,AD=3,点P从点A出发,沿长方形ABCD的边逆时针运动,设点P运动的距离为x;△APC的面积为y,如果5<x<8,那么y关于x的函数关系式为y=-52x+20【考点】函数关系式.【答案】见试题解答内容【分析】找出当5<x<8时,点P的位置,根据AB、AD的长度可找出PC的长度,再根据三角形的面积公式即可找出y关于x的函数关系式.【解答】解:当5<x<8时,点P在线段BC上,PC=8﹣x,∴y=12PC•AB=-故答案为:y=-52【点评】本题考查了函数关系式,找出当5<x<8时点P的位置是解题的关键.14.如图①,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止,设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图②所示,则矩形MNPQ的面积是20.【考点】动点问题的函数图象.【专题】函数及其图象.【答案】见试题解答内容【分析】根据图象横坐标的变化,问题可解.【解答】解:由图象可知,x=4时,点R到达P,x=9时,点R到Q点,则PN=4,QP=5∴矩形MNPQ的面积是20.【点评】本题为动点问题的函数图象探究题,考查了动点到达临界点前后图象趋势的趋势变化.解答时,要注意数形结合.15.甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中:①甲队每天挖100米;②乙队开挖两天后,每天挖50米;③甲队比乙队提前3天完成任务;④当x=2或6时,甲乙两队所挖管道长度都相差100米.正确的有①②④.(在横线上填写正确的序号)【考点】函数的图象.【答案】见试题解答内容【分析】①根据函数图象由工作效率=工作总量÷工作时间就可以得出结论;②根据函数图象由工作效率=工作总量÷工作时间就可以得出结论;③根据函数图象求出乙队完成的时间就可以求出结论;④由甲的工作效率就可以求出2天时的工作量为200米,乙队是300米.6天时甲队是600米,乙队是500米得出300﹣200=600﹣500=100米故得出结论.【解答】解:①根据函数图象得:甲队的工作效率为:600÷6=100米/天,故正确;②根据函数图象,得乙队开挖两天后的工作效率为:(500﹣300)÷(6﹣2)=50米/天,故正确;③乙队完成任务的时间为:2+(600﹣300)÷50=8天,∴甲队提前的时间为:8﹣6=2天.∵2≠3,∴③错误;④当x=2时,甲队完成的工作量为:2×100=200米,乙队完成的工作量为:300米.当x=6时,甲队完成的工作量为600米,乙队完成的工作量为500米.∵300﹣200=600﹣500=100,∴当x=2或6时,甲乙两队所挖管道长度都相差100米.故正确.故答案为:①②④.【点评】本题考查了一次函数的图象的性质的运用,工程问题的数量关系:工作总量=工作效率×工作时间的运用,解答时分析清楚一次函数的图象的意义是关键.三.解答题(共5小题)16.星期天,玲玲骑自行车到郊外游玩,她离家的距离与时间的关系如图所示,请根据图象回答下列问题.(1)玲玲到达离家最远的地方是什么时间?离家多远?(2)她何时开始第一次休息?休息了多长时间?(3)她骑车速度最快是在什么时候?车速多少?(4)玲玲全程骑车的平均速度是多少?【考点】函数的图象.【专题】图表型.【答案】见试题解答内容【分析】(1)利用图中的点的横坐标表示时间,纵坐标表示离家的距离,进而得出答案;(2)休息是全程不在随时间的增加而增加;(3)往返全程中回来时候速度最快,用距离除以所用时间即可;(4)用玲玲全程所行的路程除以所用的时间即可.【解答】解:观察图象可知:(1)玲玲到达离家最远的地方是在12时,此时离家30千米;(2)10点半时开始第一次休息;休息了半小时;(3)玲玲郊游过程中,各时间段的速度分别为:9~10时,速度为10÷(10﹣9)=10千米/时;10~10.5时,速度约为(17.5﹣10)÷(10.5﹣10)=15千米/小时;10.5~11时,速度为0;11~12时,速度为(30﹣17.5)÷(12﹣11)=12.5千米/小时;12~13时,速度为0;13~15时,在返回的途中,速度为:30÷(15﹣13)=15千米/小时;可见骑行最快有两段时间:10~10.5时;13~15时.两段时间的速度都是15千米/小时.速度为:30÷(15﹣13)=15千米/小时;(4)玲玲全程骑车的平均速度为:(30+30)÷(15﹣9﹣1.5)=403千米【点评】本题是一道函数图象的基础题,解题的关键是通过仔细观察图象,从中整理出解题时所需的相关信息,因此本题实际上是考查同学们的识图能力.17.甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,甲、乙两人间的距离为s(km)与甲行驶的时间为t(h)之间的关系如图所示.(1)以下是点M、点N、点P所代表的实际意义,请将M、N、P填入对应的横线上.①甲到达终点P.②甲乙两人相遇M.③乙到达终点N.(2)AB两地之间的路程为240千米;(3)求甲、乙各自的速度;(4)甲出发12或92h后甲、乙两人相距【考点】函数的图象.【专题】一次函数及其应用;应用意识.【答案】见试题解答内容【分析】根据函数图象和图象中的数据可以解答本题.由图象可得,AB两地之间路程为240千米;出发2小时时,甲乙在途中相遇;出发3小时时乙到达A地;6小时时甲到达B地.【解答】解:(1)分析函数图象知出发2小时时,甲乙在途中相遇;出发3小时时乙到达A地;6小时时甲到达B地.故答案为:①P;②M;③N;(2)根据函数图象和图象中的数据可以解答本题.由图象可得,AB两地之间路程为240千米故答案为:240;(3)甲的速度是:240÷6=40(千米/时),则乙的速度是:240÷2﹣40=80(千米/h);(4)①相遇之前:(240﹣180)÷(40+80)=1②相遇之后:3+(180﹣120)÷40=9故答案为:12或9【点评】本题考查函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数的思想和数形结合的思想解答.18.李大爷按每千克2.1元批发了一批黄瓜到镇上出售,为了方便,他带了一些零钱备用.他先按市场售出一些后,又降低出售.售出黄瓜千克数x与他手中持有的钱数y元(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)李大爷自带的零钱是多少?(2)降价前他每千克黄瓜出售的价格是多少?(3)卖了几天,黄瓜卖相不好了,随后他按每千克下降1.6元将剩余的黄瓜售完,这时他手中的钱(含备用的钱)是530元,问他一共批发了多少千克的黄瓜?(4)请问李大爷亏了还是赚了?若亏(赚)了,亏(赚)多少钱?【考点】函数的图象.【答案】见试题解答内容【分析】(1)图象与y轴的交点就是李大爷自带的零钱.(2)0到100时线段的斜率就是他每千克黄瓜出售的价格.(3)计算出降价后卖出的量+未降价卖出的量=总共的黄瓜.(4)赚的钱=总收入﹣批发黄瓜用的钱.【解答】解:(1)由图可得农民自带的零钱为50元.(2)(410﹣50)÷100=360÷100=3.6(元).答:降价前他每千克黄瓜出售的价格是3.6元;(3)(530﹣410)÷(3.6﹣1.6)=120÷2=60(千克),100+60=160(千克).答:他一共批发了160千克的黄瓜;(4)530﹣160×2.1﹣50=144(元).答:李大爷一共赚了144元钱.【点评】此题主要考查了函数图象,以及利用一次函数的模型解决实际问题的能力和读图能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确地列出解析式,再把对应值代入求解,并会根据图示得出所需要的信息.19.快车与慢车分别从甲乙两地同时出发,匀速而行,快车到达乙地后停留1h,然后按原路原速返回,快车比慢车晚1h到达甲地,快慢两车距各自出发地的路程y(km)与所用的时x(h)的关系如图所示.(1)甲乙两地之间的路程为420km;快车的速度为140km/h;慢车的速度为70km/h;(2)出发143h(3)快慢两车出发97h或197h或417h相距【考点】函数的图象.【专题】函数及其图象.【答案】见试题解答内容【分析】(1)先得两地的距离,根据速度=路程÷时间列式计算即可求出快车和慢车的速度;(2)由图可知:快车返程时,两车距各自出发地的路程相等,根据慢车的路程=2个总路程﹣快车的路程,列方程即可得出答案;(3)分别根据两车相遇以及两车相遇后两车距离为150km时,列方程可解答.【解答】解:(1)由图可知:甲乙两地之间的路程为420km;快车的速度为:4204-1=140km/由题意得:快车7小时到达甲地,则慢车6小时到达甲地,则慢车的速度为:4206=70km/故答案为:420,140,70;(2)∵快车速度为:140km/h,∴A点坐标为:(3,420),∴B点坐标为(4,420),由图可知:快车返程时,两车距各自出发地的路程相等,设出发x小时,两车距各自出发地的路程相等,70x=2×420﹣140(x﹣1),70x=980﹣140x,解得:x=14答:出发143故答案为:143(3)第一种情形第一次没有相遇前,相距150km,则140x+70x+150=420,解得:x=9第二种情形应是相遇后而快车没到乙地前140x+70x﹣420=150,解得:x=19第三种情形是快车从乙往甲返回:70x﹣140(x﹣4)=150,解得:x=41综上所述:快慢两车出发97h或197h或417h相距故答案为:97h或197h或【点评】本题考查了函数的应用,主要利用了时间、路程、速度三者之间的关系和追击问题的等量关系,难点在于(2)表示出快车距离出发地的路程.20.某中学的小明和朱老师一起到一条笔直的跑道上锻炼身体,到达起点后小明做了一会准备活动朱老师先跑,当小明出发时,朱老师已经距起点200米了,他们距起点的距离s(米)与小明出发的时间t(秒)之间的关系如图所示(不完整).根据图中给出的信息,解答下列问题:(1)在上述变化过程中,自变量是自变量为小明出发的时间t,因变量是因变量为距起点的距离s;(2)朱老师的速度为2米/秒;小明的速度为6

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论