福建省福州鼓楼区2026届高一数学第一学期期末考试试题含解析_第1页
福建省福州鼓楼区2026届高一数学第一学期期末考试试题含解析_第2页
福建省福州鼓楼区2026届高一数学第一学期期末考试试题含解析_第3页
福建省福州鼓楼区2026届高一数学第一学期期末考试试题含解析_第4页
福建省福州鼓楼区2026届高一数学第一学期期末考试试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省福州鼓楼区2026届高一数学第一学期期末考试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若动点.分别在直线和上移动,则线段的中点到原点的距离的最小值为()A. B.C. D.2.奇函数在内单调递减且,则不等式的解集为()A. B.C. D.3.若,则的最小值为()A.4 B.3C.2 D.14.下列函数中,在区间上是增函数的是()A. B.C. D.5.集合A=,B=,则集合AB=()A. B.C. D.6.设两条直线方程分别为,,已知,是方程的两个实根,且,则这两条直线之间的距离的最大值和最小值分别是A. B.C. D.7.下列函数中,既是偶函数,又在区间上单调递增的函数为A. B.C. D.8.若方程x2+2x+m2+3m=mcos(x+1)+7有且仅有1个实数根,则实数m的值为()A.2 B.-2C.4 D.-49.函数的零点所在的区间是()A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)10.化为弧度是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知幂函数的图象关于轴对称,且在上单调递减,则满足的的取值范围为________.12.水葫芦又名凤眼莲,是一种原产于南美洲亚马逊河流域属于雨久花科,凤眼蓝属的一种漂浮性水生植物,繁殖极快,广泛分布于世界各地,被列入世界百大外来入侵种之一.某池塘中野生水葫芦的面积与时间的函数关系图象如图所示.假设其函数关系为指数函数,并给出下列说法:①此指数函数的底数为2;②在第5个月时,野生水葫芦的面积就会超过30m2;③野生水葫芦从4m2蔓延到12m2只需1.5个月;④设野生水葫芦蔓延至2m2、3m2、6m2所需的时间分别为t1、t2、t3,则有t1+t2=t3;⑤野生水葫芦在第1到第3个月之间蔓延的平均速度等于在第2到第4个月之间蔓延的平均速度.其中,正确的是________.(填序号).13.A是锐二面角α-l-β的α内一点,AB⊥β于点B,AB=,A到l的距离为2,则二面角α-l-β的平面角大小为________.14.已知集合,若,则________.15.若偶函数在区间上单调递增,且,,则不等式的解集是___________.16.函数的最小正周期是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知角的终边经过点.(1)求的值;(2)求的值.18.已知定义域为函数是奇函数.(1)求的值;(2)判断的单调性,并证明;(3)若,求实数的取值范围.19.设函数.(1)若,且均为正实数,求的最小值,并确定此时实数的值;(2)若满足在上恒成立,求实数的取值范围.20.已知全集U={1,2,3,4,5,6,7,8},A={x|x2-3x+2=0},B={x|1≤x≤5,x∈Z},C={x|2<x<9,x∈Z}.求(1)A∪(B∩C);(2)(∁UB)∪(∁UC)21.对于在区间上有意义的函数,若满足对任意的,,有恒成立,则称在上是“友好”的,否则就称在上是“不友好”的.现有函数.(1)当时,判断函数在上是否“友好”;(2)若关于x的方程的解集中有且只有一个元素,求实数a的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】先分析出M的轨迹,再求到原点的距离的最小值.【详解】由题意可知:M点的轨迹为平行于直线和且到、距离相等的直线l,故其方程为:,故到原点的距离的最小值为.故选:C【点睛】解析几何中与动点有关的最值问题一般的求解思路:①几何法:利用图形作出对应的线段,利用几何法求最值;②代数法:把待求量的函数表示出来,利用函数求最值.2、A【解析】由已知可作出函数的大致图象,结合图象可得到答案.【详解】因为函数在上单调递减,,所以当时,,当,,又因为是奇函数,图象关于原点对称,所以在上单调递减,,所以当时,,当时,,大致图象如下,由得或,解得,或,或,故选:A.【点睛】本题考查了抽象函数的单调性和奇偶性,解题的关键点是由题意分析出的大致图象,考查了学生分析问题、解决问题的能力.3、D【解析】利用“乘1法”即得.【详解】因为,所以,∴,当且仅当时,即时取等号,所以的最小值为1.故选:D.4、B【解析】根据函数单调性的定义和性质分别进行判断即可【详解】解:对于选项A.的对称轴为,在区间上是减函数,不满足条件对于选项B.在区间上是增函数,满足条件对于选项C.在区间上是减函数,不满足条件对于选项D.在区间上是减函数,不满足条件故满足条件的函数是故选:B【点睛】本题主要考查函数单调性的判断,要求熟练掌握常见函数的单调性,属基础题5、B【解析】直接根据并集的运算可得结果.【详解】由并集的运算可得.故选:B.6、B【解析】两条直线之间的距离为,选B点睛:求函数最值,一般通过条件将函数转化为一元函数,根据定义域以及函数单调性确定函数最值7、C【解析】选项A中,函数的定义域为,不合题意,故A不正确;选项B中,函数的定义域为,无奇偶性,故B不正确;选项C中,函数为偶函数,且当x>0时,,为增函数,故C正确;选项D中,函数为偶函数,但在不是增函数,故D不正确选C8、A【解析】令,由对称轴为,可得,解出,并验证即可.【详解】依题意,有且仅有1个实数根.令,对称轴为.所以,解得或.当时,,易知是连续函数,又,,所以在上也必有零点,此时不止有一个零点,故不合题意;当时,,此时只有一个零点,故符合题意.综上,.故选:A【点睛】关键点点睛:构造函数,求出的对称轴,利用对称的性质得出.9、C【解析】利用零点存在性定理判断即可.【详解】易知函数的图像连续,,由零点存在性定理,排除A;又,,排除B;,,结合零点存在性定理,C正确故选:C.【点睛】判断零点所在区间,只需利用零点存在性定理,求出区间端点的函数值,两者异号即可,注意要看定义域判断图像是否连续.10、D【解析】根据角度制与弧度制的互化公式,正确运算,即可求解.【详解】根据角度制与弧度制的互化公式,可得.故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据幂函数的单调性和奇偶性得到,代入不等式得到,根据函数的单调性解得答案.【详解】幂函数在上单调递减,故,解得.,故,,.当时,不关于轴对称,舍去;当时,关于轴对称,满足;当时,不关于轴对称,舍去;故,,函数在和上单调递减,故或或,解得或.故答案为:12、①②④【解析】设且,根据图像求出,结合计算进而可判断①②③④;根据第1到第3个月、第2到第4个月的面积即可求出对应的平均速度,进而判断⑤.【详解】因为其关系为指数函数,所以可设且,又图像过点,所以.所以指数函数的底数为2,故①正确;当时,,故②正确;当y=4时,;当y=12时,;所以,故③错误;因为,所以,故④正确;第1到第3个月之间的平均速度为:,第2到第4个月之间的平均速度为:,,故⑤错误.故答案为:①②④13、【解析】如图,过点B作与,连,则有平面,从而得,所以即为二面角的平面角在中,,所以,所以锐角即二面角的平面角的大小为答案:点睛:作二面角的平面角可以通过垂线法进行,在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角,然后通过解三角形的方法求得角,解题时要注意所求角的范围14、0【解析】若两个集合相等,则两个集合中的元素完全相同.,又,故答案为0.点睛:利用元素的性质求参数的方法(1)确定性的运用:利用集合中元素的确定性解出参数的所有可能值;(2)互异性的运用:根据集合中元素的互异性对集合中元素进行检验.15、【解析】根据题意,结合函数的性质,分析可得在区间上的性质,即可得答案.【详解】因为偶函数在区间上单调递增,且,,所以在区间上单调上单调递减,且,所以的解集为.故答案为:16、【解析】直接利用三角函数的周期公式,求出函数的周期即可.【详解】函数中,.故答案为:【点睛】本题考查三角函数的周期公式的应用,是基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】因为角终边经过点,设,,则,所以,,.(1)即得解;(2)化简即可得解.试题解析:因为角终边经过点,设,,则,所以,,.(1)(2)18、(1)(2)增函数,证明见解析(3)或【解析】(1)由求出,再验证此时为奇函数即可;(2)将的解析式分离常数后可判断出单调性,再利用增函数的定义可证结论成立;(3)利用奇函数性质化为,再利用增函数性质可求出结果.【小问1详解】因为是上的奇函数,所以,即,此时,,所以为奇函数,故.【小问2详解】由(1)知,为上的增函数,证明:任取,且,则,因为,所以,即,又,所以,即,根据增函数的定义可得为上的增函数.【小问3详解】由得,因为为奇函数,所以,因为为增函数,所以,即,所以或.19、(1)的最小值为3,此时;(2)【解析】(1)由可得,则由结合基本不等式即可求出;(2)不等式恒成立等价于对恒成立,利用判别式可得对恒成立,再利用判别式即可求出的范围.【详解】(1),则,,当且仅当,即时等号成立,的最小值为3,此时;(2),则,即对恒成立,则,即对恒成立,则,解得.【点睛】本题考查基本不等式的应用,考查一元二次不等式的恒成立问题,属于中档题.20、(1)A∪(B∩C)={1,2,3,4,5}.(2)(∁UB)∪(∁UC)={1,2,6,7,8}【解析】(1)先求集合A,B,C;再求B∩C,最后求A∪(B∩C)(2)先求∁UB,∁UC;再求(∁UB)∪(∁UC)试题解析:解:(1)依题意有:A={1,2},B={1,2,3,4,5},C={3,4,5,6,7,8},∴B∩C={3,4,5},故有A∪(B∩C)={1,2}∪{3,4,5}={1,2,3,4,5}(2)由∁UB={6,7,8},∁UC={1,2};故有(∁UB)∪(∁UC)={6,7,8}∪{1,2}={1,2,6,7,8}21、(1)当时,函数在,上是“友好”的(2)【解析】(1)当时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论