版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
《对数的概念》教案教学目标教学目标:1.初步理解对数的概念,能进行指数式与对数式的互化;2.了解指数与对数的内在联系,在概念指导下完成对数计算;3.借助转化思想理解对数本质,培养数学运算和数学抽象的素养。教学重点:对数的概念、指数式与对数的互化。教学难点:对数符号的理解,以及对数与指数间的联系的认识。教学过程时间教学环节主要师生活动1分30秒温故知新已有旧知教师提出问题:学习指数函数时我们曾讲解过这样一道题目:某地B景区从2001年起游客人次的年增长率为0.11,设经过x年后的游客人次为2001年的y倍,表示x,y的关系,并试求经过多少年游客人次是2001年的2倍,3倍,4倍……?新知产生教师点拨:求解x的值,其实就是已知底数和幂的值,求指数.这就是本节要学习的对数。对数是一种新的运算,由刚才的实际问题可以感受到学习这种运算的必要。10分钟探究新知新知形成对于形如,求的问题,我们引入新的符号来表示的值.1.1x=2,那么可以记作=log1.12,读作以1.1为底2的对数;2=3,那么可以记作=log23,读作以为底的对数;若2x=N呢?.对数的概念一般地,如果,那么数x叫做以为底的对数,记作,其中叫做对数的底数,叫做真数注意:是对数的符号,类似除法运算的“”,表示一种运算,用它连接运算的对象;已知底数a和它的幂N求指数的运算,这种运算叫对数运算,只不过对数运算的符号写在数的前面,其运算结果仍是一个实数。新知特征指数式与对数式的互化底数指数底数指数幂真数对数由指数与对数的等价关系,思考在对数式中,的范围?.教师点评:对于的范围源于指数式中对于底数、幂、指数的要求。2.对数的重要结论:(1)当是负数或零时,对数不存在,即负数和零没有对数.(2)(3).3.两种特殊对数通常,我们将以10为底的对数叫做常用对数,并把如,在生活中如充电器的电容的电压关系,物体的自然冷却关系、细胞的繁殖等,为了描述其自然规律,经常会用到无理数2.71828……,用e表示这个无理数。以无理数e=2.71828……为底数的对数,称为自然对数,并把记作6分钟典例剖析例1指数式与对数式互化:解:(1)(2)(3)(4)(5)(6)通过这组习题同学们感受到指数与对数虽然表达形式不同,但是两者的本质是一致的,即底数、指数与对数、幂与真数的对应例2.求下列各式中的x值:(1)(2)(3)(4)解:(1)因为所以(2)因为(3)因为(4)因为通过将对数运算转化为指数幂运算,求出对数表达式中对应的具体数值,熟悉指数式与对数式间的关系,计算中要注意位置的转换。5分钟追根溯源几乎所有的现代数学书中,对数运算是通过解指数方程来引入的.但是,就对数发明的起源而言,恰恰是相反,先发明了对数而后发明了指数。事实上,对数是简化繁杂运算的产物.16世纪时,科学技术尤其是天文学的飞速发展,需要用到大量的大数乘除法运算,这就迫切需要计算技术的改进.当时的数学家们感叹:“没有什么比大数的乘、除、开平方或开立方运算更让数学工作者头痛、更阻碍计算者的了.这不仅浪费时间,而且容易出错.”为了简化数值计算,1614年约翰·奈皮尔利用对应的思想发表《奇妙的对数表的描述》,提供了提高运算速度的方法。奈皮尔的对应思想类似下表。我们发现下表的关系满足指数关系,利用以下对应可以方便地算出16×256的值.首先,在第二行找到16与256;然后找出它们在第一行中对应的数,即4与8,并求它们的和,即12;最后在第一行中找到12,读出其对应的第二行中的数4096,这就是16×256的值.用类似的方法也可以计算4096256纳皮尔将该数称为对数“logarithm”,这个词由希腊文logos(关系)和arithmos(数)两词合成,体现对应思想对数的发明实现了将乘除运算降级为简单的加减运算。数学家拉普拉斯说过:“对数的发现,因其节约劳力而延长了天文学家的寿命。”1分钟课堂小结1.对数的概念,指数式与对数式的转化;2.对数的相关结论及运用;3.对数发明的背景与原理.课后作业1.123页练习1,2,32.阅读教材128-129页了解对数的发明3.通过互联网,进一步了解无理数e,常数对数和自然对数课后篇巩固提升合格考达标练1.方程2log3A.19 B.3 C.33 D答案A解析∵2log3x=14=2-2,∴log3x=-2,∴2.(多选题)下列指数式与对数式互化正确的是()A.e0=1与ln1=0B.8-13=1C.log39=2与912D.log77=1与71=7答案ABD解析log39=2应转化为32=9.3.(多选题)(2021湖南邵阳十一中高一期末)下列结论正确的是()A.log24=2 B.2.10.5>2.1-1.8C.3log32=2 D.答案ABC解析log24=2,故A正确;根据函数y=2.1x是增函数可知2.10.5>2.1-1.8,故B正确;根据指对恒等式可知3log32=2,故C正确;-lne=-1,故D不正确4.(2021北京大兴高一期末)813+A.0 B.1 C.2 D.3答案B解析813+log122=23×13-log25.若a>0,a2=49,则log23a=答案1解析∵a2=49且a>0,∴a=23,∴log26.解答下列各题.(1)计算:lg0.0001;log2164;log3.12(log1515)(2)已知log4x=-32,log3(log2y)=1,求xy的值解(1)因为10-4=0.0001,所以lg0.0001=-4.因为2-6=164,所以log2164=-log3.12(log1515)=log3.121=0.(2)因为log4x=-32,所以x=4-32=2-因为log3(log2y)=1,所以log2y=3.所以y=23=8.所以xy=18×8=17.求下列各式的值:(1)log1162;(2)log7349;(3)log2(log解(1)设log1162=x,则116x=2,即2-∴-4x=1,x=-14,即log1162(2)设log7349=x,则7x=3∴x=23,即log73(3)设log93=x,则9x=3,即32x=3,∴x=12设log212=y,则2y=12=2-∴y=-1.∴log2(log93)=-1.等级考提升练8.若loga3=m,loga5=n(a>0且a≠1),则a2m+n的值是()A.15 B.75 C.45 D.225答案C解析由loga3=m,得am=3,由loga5=n,得an=5,∴a2m+n=(am)2·an=32×5=45.9.函数y=log(2x-1)3x-2A.23,1∪(1,+∞)B.12,1∪(1,+∞)C.23,+∞D.12,+∞答案A解析要使函数有意义,则2x-1>0,2x-1≠1,3x-2>0,解此不等式组可得x>12且x≠110.已知f(x6)=log2x,则f(8)=()A.43 B.8 C.18 D.答案D解析令x6=8,则x2=2,因为x>0,则x=2,故f(8)=log22=11.(多选题)(2021福建泉州高一期末)下列函数中,与y=x是同一个函数的是()A.y=3x3 B.C.y=lg10x D.y=10lgx答案AC解析y=x的定义域为R,值域为R,函数y=3x3=x的定义域为R,故是同一函数;函数y=x2=|x|≥0,与y=x解析式、值域均不同,故不是同一函数;函数y=lg10x=x,且定义域为R,对应关系相同,故是同一函数;y=10lgx=x的定义域为(0,+∞),与函数y=x的定义域不相同,故不是同一函数.12.已知f(x)=1+log2(2-x),x<1A.6 B.5 C.4 D.3答案B解析由题意得f(-2)+f(2)=(1+log24)+2=5,故选B.13.已知log12(log2x)=log13(log3y)=1,则x,A.x<y B.x=yC.x>y D.不确定答案A解析因为log12(log2x)所以log2x=12.所以x=2又因为log13(log3y)=1,所以log3y=所以y=31因为2=623=6814.21+12·答案25解析21+12log25=2×212log2515.已知logab=logba(a>0,a≠1,b>0,b≠1),求证:a=b或ab=1.证明设logab=logba=k,则b=ak,a=bk,因此b=(b因为b>0,b≠1,所以k2=1,即k=±1.当k=1时,a=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高职(林业信息技术应用)林业信息综合测试试题及答案
- 2025年大学轨道装备(轨道线路养护)试题及答案
- 临床SWI在中枢神经系统疾病的应用
- 3.2《探索活动:25的倍数的特征》(教学课件)-五年级 数学上册 北师大版
- 蓝绿科技风2.5d插画跨境电商工作总结
- 《C语言程序设计:从计算思维到项目驱动(微课视频版)》习题及答案汇 第1-12章 C语言概述-贪吃蛇
- 工程安全生产培训会议课件
- 工程安全培训心得课件
- 2026年节能减排知识竞赛试题库及答案
- 2026年社区社会治安综合治理工作计划范文(4篇)
- 2025重庆市涪陵区马武镇人民政府选聘本土人才14人参考题库附答案
- 二年级上册语文试题-第六单元测试题-人教部编版(含答案)
- 医院院感考试题库及答案
- 拣货主管年终总结
- 糖尿病重症患者肠内营养血糖调控方案
- GB/T 15789-2005土工布及其有关产品无负荷时垂直渗透特性的测定
- GA/T 995-2020道路交通安全违法行为视频取证设备技术规范
- 化学工程与技术学科硕士研究生培养方案
- 最新人教版七年级英语上册全册复习课件
- 家庭农场认定申请表(表样)
- YY∕T 0296-2022 一次性使用注射针 识别色标
评论
0/150
提交评论