2026届吉林省安图县安林中学数学高二上期末调研模拟试题含解析_第1页
2026届吉林省安图县安林中学数学高二上期末调研模拟试题含解析_第2页
2026届吉林省安图县安林中学数学高二上期末调研模拟试题含解析_第3页
2026届吉林省安图县安林中学数学高二上期末调研模拟试题含解析_第4页
2026届吉林省安图县安林中学数学高二上期末调研模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届吉林省安图县安林中学数学高二上期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设双曲线的虚轴长为,焦距为,则双曲线的渐近线方程为()A. B.C. D.2.已知数列为等比数列,则“为常数列”是“成等差数列”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件3.已知椭圆C:的左右焦点为F1,F2,离心率为,过F2的直线l交C与A,B两点,若△AF1B的周长为,则C的方程为()A. B.C. D.4.设是公差的等差数列,如果,那么()A. B.C. D.5.圆C:的圆心坐标和半径分别为()A.和4 B.(-3,2)和4C.和 D.和6.已知是抛物线的焦点,是抛物线的准线,点,连接交抛物线于点,,则的面积为()A.4 B.9C. D.7.如图,在四面体中,,,,点为的中点,,则()A. B.C. D.8.已知函数的导函数为,且满足,则()A. B.C. D.9.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上两人与下三人等,问各得几何?”其意思为:“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得之和与丙、丁、戊所得之和相同,且是甲、乙、丙、丁、戊所得以此为等差数列,问五人各得多少钱?”(“钱”是古代一种重量单位),这个问题中戊所得为()A.钱 B.钱C.钱 D.钱10.已知变量x,y具有线性相关关系,它们之间的一组数据如下表所示,若y关于x的线性回归方程为,则m=()x1234y0.11.8m4A.3.1 B.4.3C.1.3 D.2.311.在数列中,,则等于A. B.C. D.12.在平面内,A,B是两个定点,C是动点,若,则点C的轨迹为()A.圆 B.椭圆C.抛物线 D.直线二、填空题:本题共4小题,每小题5分,共20分。13.已知数列满足,且.则数列的通项公式为_______14.若圆心坐标为圆被直线截得的弦长为,则圆的半径为______.15.已知椭圆的左、右焦点分别为、,关于原点对称的点A、B在椭圆上,且满足,若令且,则该椭圆离心率的取值范围为___________16.设函数满足,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线,半径为的圆与相切,圆心在轴上且在直线的右上方.(1)求圆的方程;(2)过点的直线与圆交于两点在轴上方),问在轴正半轴上是否存在定点,使得轴平分?若存在,请求出点的坐标;若不存在,请说明理由.18.(12分)已知等差数列的前项和为,,且.(1)求数列的通项公式;(2)设数列的前项和为,证明:.19.(12分)已知等差数列的前项和满足,.(1)求的通项公式;(2)设,求数列的前n项和.20.(12分)某省食品药品监管局对15个大学食堂“进货渠道合格性”和“食品安全”进行量化评估,满分为10分,大部分大学食堂的评分在7~10分之间,以下表格记录了它们的评分情况:分数段食堂个数1383(1)现从15个大学食堂中随机抽取3个,求至多有1个大学食堂的评分不低于9分的概率;(2)以这15个大学食堂的评分数据评估全国的大学食堂的评分情况,若从全国的大学食堂中任选3个,记X表示抽到评分不低于9分的食堂个数,求X的分布列及数学期望.21.(12分)已知函数(1)当时,求曲线在点处的切线方程;(2)若对任意的,恒成立,求实数a的取值范围22.(10分)已知椭圆:过点,且离心率(Ⅰ)求椭圆的标准方程;(Ⅱ)设的左、右焦点分别为,,过点作直线与椭圆交于,两点,,求的面积

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】求出、的值,即可得出双曲线的渐近线方程.【详解】由已知可得,,则,因此,该双曲线的渐近线方程为.故选:B.2、C【解析】先考虑充分性,再考虑必要性即得解.【详解】解:如果为常数列,则成等差数列,所以“为常数列”是“成等差数列”的充分条件;等差数列,所以,所以数列为,所以数列是常数列,所以“为常数列”是“成等差数列”的必要条件.所以“为常数列”是“成等差数列”的充要条件.故选:C3、A【解析】根据椭圆的定义可得△AF1B的周长为4a,由题意求出a,结合离心率计算即可求出c,再求出b即可.【详解】由椭圆的定义知,△AF1B的周长为,又△AF1B的周长为4,则,,,,,所以方程为,故选:A.4、D【解析】由已知可得,即可得解.【详解】由已知可得.故选:D.5、C【解析】先将方程化为一般形式,再根据公式计算求解即可.【详解】解:可化为,由圆心为,半径,易知圆心的坐标为,半径为故选:C6、D【解析】根据题意求得抛物线的方程为和焦点为,由,得到为的中点,得到,代入抛物线方程,求得,进而求得的面积.【详解】由直线是抛物线的准线,可得,即,所以抛物线的方程为,其焦点为,因为,可得可得三点共线,且为的中点,又因为,,所以,将点代入抛物线,可得,所以的面积为.故选:D.7、B【解析】利用插点的方法,将归结到题目中基向量中去,注意中线向量的运用.【详解】.故选:B.8、C【解析】求出导数后,把x=e代入,即可求解.【详解】因为,所以,解得故选:C9、D【解析】根据题意将实际问题转化为等差数列的问题即可解决【详解】解:由题意,可设甲、乙、丙、丁、戊五人分得的钱分别为,,,,则,,,,成等差数列,设公差为,整理上面两个算式,得:,解得,故选:10、A【解析】先求得样本中心,代入回归方程,即可得答案.【详解】由题意得,又样本中心在回归方程上,所以,解得.故选:A11、D【解析】分析:已知逐一求解详解:已知逐一求解.故选D点睛:对于含有的数列,我们看作摆动数列,往往逐一列举出来观察前面有限项的规律12、A【解析】首先建立平面直角坐标系,然后结合数量积定义求解其轨迹方程即可.【详解】设,以AB中点为坐标原点建立如图所示的平面直角坐标系,则:,设,可得:,从而:,结合题意可得:,整理可得:,即点C的轨迹是以AB中点为圆心,为半径的圆.故选:A.【点睛】本题主要考查平面向量及其数量积的坐标运算,轨迹方程的求解等知识,意在考查学生的转化能力和计算求解能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】倒数型求数列通项公式,第一步求倒数,第二步构造数列,求通项.【详解】因为,所以,所以数列是首项为1,公差为1的等差数列,所以故答案为:.14、【解析】利用垂径定理计算即可.【详解】设圆的半径为,则,得.故答案为:.15、【解析】由得为矩形,则,故,结合正弦函数即可求得范围【详解】由已知可得,且四边形为矩形所以,又因为,所以得离心率因为,所以,可得,从而故答案为:16、5【解析】考点:函数导数与求值三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)存在,.【解析】(1)设出圆心,根据圆心到直线距离等于半径列方程求出的值可得圆心坐标,进而可得圆的方程;(2)由题可设直线的方程为,与圆的方程联立,利用韦达定理及可得,即得.【小问1详解】由已知可设圆心,则,解得或(舍).所以圆.【小问2详解】由题可设直线的方程为,由,得到:显然成立,所以.①若轴平分,则,所以:,整理得:,将①代入整理得对任意的恒成立,则.∴存在点为时,使得轴平分.18、(1);(2)证明见解析.【解析】(1)根据等差数列的性质及题干条件,可求得,代入公式,即可求得数列的通项公式;(2)由(1)可得,利用裂项相消求和法,即可求得,即可得证.【详解】解:(1)设数列的公差为,在中,令,得,即,故①.由得,所以②.由①②解得,.所以数列的通项公式为:.(2)由(1)可得,所以,故,所以.因为,所以.【点睛】数列求和的常见方法:(1)倒序相加法:如果一个数列的前n项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n项和可以用倒序相加法;(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n项和可以两两结合求解,则称之为并项求和,形如类型,可采用两项合并求解.19、(1)(2)【解析】(1)根据已知求出首项和公差即可求出;(2)利用裂项相消法求解即可.【小问1详解】设等差数列的公差为,因为,所以,化简得,解得,所以【小问2详解】由(1)可知,所以,所以.20、(1)(2)分布列见解析,【解析】(1)利用古典概型的概率公式可求概率.(2)由题设可得,故利用二项分布可求的分布列,利用公式可求其期望.【小问1详解】设至多有1个大学食堂的评分不低于9分为事件,则.所以至多有1个大学食堂的评分不低于9分的概率为.【小问2详解】任意一个大学食堂,其评分不低于9分的概率为,故,所以,,,,的分布列为:0123.21、(1)(2)【解析】(1)先求导,由到数值求出斜率,最后根据点斜式求出方程即可;(2)采用分离常数法,转化为求新函数的值域即可.【小问1详解】时,,,则,,所以在点处的切线方程为,即【小问2详解】对任意的,恒成立,即,对任意的,令,即,则,因为,,所以当时,,在区间上单调递减,当时,,在区间上单

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论