2026届上海市长宁区、嘉定区高一数学第一学期期末调研试题含解析_第1页
2026届上海市长宁区、嘉定区高一数学第一学期期末调研试题含解析_第2页
2026届上海市长宁区、嘉定区高一数学第一学期期末调研试题含解析_第3页
2026届上海市长宁区、嘉定区高一数学第一学期期末调研试题含解析_第4页
2026届上海市长宁区、嘉定区高一数学第一学期期末调研试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届上海市长宁区、嘉定区高一数学第一学期期末调研试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若函数的最大值为,最小值为-,则的值为A. B.2C. D.42.下列函数中,是偶函数,且在区间上单调递增的为()A. B.C. D.3.已知扇形的圆心角为,面积为,则扇形的弧长等于(

)A. B.C. D.4.已知函数,则等于A.2 B.4C.1 D.5.sin()=()A. B.C. D.6.已知y=(x-m)(x-n)+2022(m<n),且α,β(α<β)是方程y=0的两根,则α,β,m,n的大小关系是()A.α<m<n<β B.m<α<n<βC.m<α<β<n D.α<m<β<n7.平行于直线且与圆相切的直线的方程是A.或 B.或C.或 D.或8.要得到的图像,只需将函数的图像()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位9.公元263年左右,我国数学有刘徽发现当圆内接多边形的边数无限增加时,多边形的面积可无限逼近圆的面积,并创立了割圆术,利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值3.14,这就是著名的“徽率”.某同学利用刘徽的“割圆术”思想设计了一个计算圆周率的近似值的程序框图如图,则输出S的值为(参考数据:)A.2.598 B.3.106C.3.132 D.3.14210.集合A={y|y=x+1,x∈R},B={y|y=2x,x∈R},则A∩B等于()A. B.C. D.,二、填空题:本大题共6小题,每小题5分,共30分。11.若,则的值为___________.12.向量在边长为1的正方形网格中的位置如图所示,则__________13.已知函数的定义域为,当时,,若,则的解集为______14.衣柜里的樟脑丸,随着时间会挥发而体积缩小,刚放进的新丸体积为a,经过t天后体积V与天数t的关系式为:.已知新丸经过50天后,体积变为.若一个新丸体积变为,则需经过的天数为______15.若函数满足,且时,,已知函数,则函数在区间内的零点的个数为__________.16.已知函数若函数有三个不同的零点,且,则的取值范围是____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.英国数学家泰勒发现了如下公式:,其中,此公式有广泛的用途,例如利用公式得到一些不等式:当时,,.(1)证明:当时,;(2)设,若区间满足当定义域为时,值域也为,则称为的“和谐区间”.(i)时,是否存在“和谐区间”?若存在,求出的所有“和谐区间”,若不存在,请说明理由;(ii)时,是否存在“和谐区间”?若存在,求出的所有“和谐区间”,若不存在,请说明理由.18.已知函数.(1)若且的最小值为,求不等式的解集;(2)若当时,不等式恒成立,求实数的取值范围.19.给出以下三个条件:①点和为函数图象的两个相邻的对称中心,且;②;③直线是函数图象的一条对称轴从这三个条件中任选两个条件将下面题目补充完整,并根据要求解题已知函数.满足条件________与________(1)求函数的解析式;(2)把函数的图象向右平移个单位长度,再将所得到的函数图象上的所有点的横坐标变为原来倍(纵坐标不变),得到函数的图象.当时,函数的值域为,求实数的取值范围20.某农户利用墙角线互相垂直的两面墙,将一块可折叠的长为am的篱笆墙围成一个鸡圈,篱笆的两个端点A,B分别在这两墙角线上,现有三种方案:方案甲:如图1,围成区域为三角形;方案乙:如图2,围成区域为矩形;方案丙:如图3,围成区域为梯形,且.(1)在方案乙、丙中,设,分别用x表示围成区域的面积,;(2)为使围成鸡圈面积最大,该农户应该选择哪一种方案,并说明理由.21.已知函数.(1)求、、的值;(2)若,求a的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】当时取最大值当时取最小值∴,则故选D2、D【解析】根据基本初等函数的奇偶性及单调性逐一判断.【详解】A.在其定义域上为奇函数;B.,在区间上时,,其为单调递减函数;C.在其定义域上为非奇非偶函数;D.的定义域为,在区间上时,,其为单调递增函数,又,故在其定义域上为偶函数.故选:D.3、C【解析】根据圆心角可以得出弧长与半径的关系,根据面积公式可得出弧长【详解】由题意可得,所以【点睛】本题考查扇形的面积公式、弧长公式,属于基础题4、A【解析】由题设有,所以,选A5、A【解析】直接利用诱导公式计算得到答案.【详解】故选:【点睛】本题考查了诱导公式化简,意在考查学生对于诱导公式的应用.6、C【解析】根据二次函数的性质判断【详解】记,由题意,,的图象是开口向上的抛物线,所以上递减,在上递增,又,,所以,,即(也可由的图象向下平移2022个单位得的图象得出判断)故选:C7、A【解析】设所求直线为,由直线与圆相切得,,解得.所以直线方程为或.选A.8、A【解析】化简函数,即可判断.【详解】,需将函数的图象向左平移个单位.故选:A.9、C【解析】阅读流程图可得,输出值为:.本题选择C选项.点睛:识别、运行程序框图和完善程序框图的思路(1)要明确程序框图的顺序结构、条件结构和循环结构(2)要识别、运行程序框图,理解框图所解决的实际问题(3)按照题目要求完成解答并验证10、A【解析】由得,得,则,故选A.二、填空题:本大题共6小题,每小题5分,共30分。11、1或【解析】由诱导公式、二倍角公式变形计算【详解】,所以或,时,;时,故答案为:1或12、3【解析】由题意可知故答案为313、##【解析】构造,可得在上单调递减.由,转化为,利用单调性可得答案【详解】由,得,令,则,又,所以在上单调递减由,得,因为,所以,所以,得故答案为:.14、75【解析】由题意,先算出,由此可算出一个新丸体积变为需经过的天数.【详解】由已知,得,∴设经过天后,一个新丸体积变为,则,∴,∴,故答案为:75.15、10【解析】根据,可得函数是以2为周期的周期函数,函数在区间内的零点的个数即为函数交点的个数,作出两个函数的图像,结合图像即可得出答案.【详解】解:因为,所以,所以函数是以2为周期的周期函数,令,则,在同一平面直角坐标系中作出函数的图像,如图所示,由图可知函数有10个交点,所以函数在区间内的零点有10个.故答案为:10.16、;【解析】作图可知:点睛:利用函数零点情况求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)(i)不存在“和谐区间”,理由见解析(ii)存在,有唯一的“和谐区间”【解析】(1)利用来证得结论成立.(2)(i)通过证明方程只有一个实根来判断出此时不存在“和谐区间”.(ii)对的取值进行分类讨论,结合的单调性以及(1)的结论求得唯一的“和谐区间”.【小问1详解】由已知当时,,得,所以当时,.【小问2详解】(i)时,假设存在,则由知,注意到,故,所以在单调递增,于是,即是方程的两个不等实根,易知不是方程的根,由已知,当时,,令,则有时,,即,故方程只有一个实根0,故不存在“和谐区间”.(ii)时,假设存在,则由知若,则由,知,与值域是矛盾,故不存在“和谐区间”,同理,时,也不存在,下面讨论,若,则,故最小值为,于是,所以,所以最大值为2,故,此时的定义域为,值域为,符合题意.若,当时,同理可得,舍去,当时,在上单调递减,所以,于是,若即,则,故,与矛盾;若,同理,矛盾,所以,即,由(1)知当时,,因为,所以,从而,,从而,矛盾,综上所述,有唯一的“和谐区间”.【点睛】对于“新定义”的题目,关键是要运用新定义的知识以及原有的数学知识来进行求解.本题有两个“新定义”,一个是泰勒发现的公式,另一个是“和谐区间”.泰勒发现的公式可以直接用于证明,“和谐区间”可转化为函数的单调性来求解.18、(1);(2).【解析】(1)利用二次函数的最值可求得正数的值,再利用二次不等式的解法解不等式,即可得解;(2)令,根据题意可得出关于实数的不等式组,由此可解得实数的取值范围.【小问1详解】解:的图象是对称轴为,开口向上的抛物线,所以,,因为,解得,由得,即,得,因此,不等式的解集为.【小问2详解】解:由得,设函数,因为函数的图象是开口向上的抛物线,要使当时,不等式恒成立,即在上恒成立,则,可得,解得.19、(1)条件选择见解析,;(2).【解析】(1)选①②,根据条件可求得函数的最小正周期,可求得的值,由②结合的取值范围,可求得的值,即可得出函数的解析式;选①③,根据条件可求得函数的最小正周期,可求得的值,由③结合的取值范围,可求得的值,即可得出函数的解析式;选②③,分别由②、③可得出关于的表达式,两式作差可得出关于的等式,结合的取值范围可求得的值,再由②结合的取值范围,可求得的值,即可得出函数的解析式;(2)利用三角函数图象变换求得,由,得,分析可知函数,的值域为,由此可得出关于实数的不等式,由此可解得实数的取值范围.【小问1详解】解:设函数的最小正周期为,若选择①②,由①知,由②知,即,则,解得,又因为,所以,所以若选择①③,由①知,,由③知,解得又因为,所以,所以若选择②③,由②知,即,所以,由③知两式相减得,所以,因为,所以当时,,又因为,所以,所以【小问2详解】解:将向右平移个单位后得再把得到的函数图像上的所有点的横坐标变为原来的倍(纵坐标不变),得到函数,由,得因为的值域为,所以,的值域为所以,即.所以实数的取值范围为20、(1),;,.(2)农户应该选择方案三,理由见解析.【解析】(1)根据矩形面积与梯形的面积公式表示即可得答案;(2)先根据基本不等式研究方案甲得面积的最大值为,再根据二次函数的性质结合(1)研究,的最大值即可得答案.【小问1详解】解:对于方案乙,当时,,所以矩形的面积,;对于方案丙,当时,,由于所以,所以梯形面积为,.【小问2详解】解:对于方案甲,设,则,所以三角形的面积为,当且仅当时等号成立,故方案甲的鸡圈面积最大值为.对于方案乙,由(1)得,,当且仅当时取得最大值.故方案乙的鸡圈面积最大值为;对于方案丙,,.当且仅当时取得最大值.故方案丙的鸡圈面积最大值为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论