版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市嘉定、长宁区2026届数学高一上期末联考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.全称量词命题“,”的否定是()A., B.,C., D.以上都不正确2.已知函数.若,,,则的大小关系为()A. B.C. D.3.定义在上的函数满足下列三个条件:①;②对任意,都有;③的图像关于轴对称.则下列结论中正确的是AB.C.D.4.公元前6世纪,古希腊的毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值约为0.618,这一数值也可以表示为.若.则()A. B.C.2 D.5.已知扇形的半径为,面积为,则这个扇形的圆心角的弧度数为()A. B.C. D.6.已知函数为偶函数,且在上单调递减,则的解集为A. B.C. D.7.已知是定义在上的奇函数,且在上单调递增,若,则的解集为()A. B.C. D.8.设方程的解为,则所在的区间是A. B.C. D.9.已知函数,则该函数的零点位于区间()A. B.C. D.10.设,则A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的单调递增区间是_________12.函数的图象恒过定点P,P在幂函数的图象上,则___________.13.若则______14.奇函数f(x)是定义在[-2,2]上的减函数,若f(2a+1)+f(4a-3)>0,则实数a的取值范围是_______15.已知函数,若在上是增函数,且直线与的图象在上恰有一个交点,则的取值范围是________.16.已知,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在平面直角坐标系中,锐角和钝角的顶点与原点重合,始边与轴的非负半轴重合,终边分别与单位圆交于,两点,且.(1)求的值;(2)若点的横坐标为,求的值.18.已知集合(1)当时,求;(2)若,求实数的取值范围.19.若关于的不等式的解集为(1)求的值;(2)求不等式的解集.20.已知函数,若函数的图象过点,(1)求的值;(2)若,求实数的取值范围;(3)若函数有两个零点,求实数的取值范围.21.已知二次函数的图象与轴、轴共有三个交点.(1)求经过这三个交点的圆的标准方程;(2)当直线与圆相切时,求实数的值;(3)若直线与圆交于两点,且,求此时实数的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据全称量词命题的否定是存在量词命题,即可得出结论.【详解】全称量词命题“,”的否定为“,”.故选:C.2、C【解析】由函数的奇偶性结合单调性即可比较大小.【详解】根据题意,f(x)=x2﹣2|x|+2019=f(﹣x),则函数f(x)为偶函数,则a=f(﹣log25)=f(log25),当x≥0,f(x)=x2﹣2x+2019=(x﹣1)2+2018,在(0,1)上为减函数,在(1,+∞)上为增函数;又由1<20.8<2<log25,则.则有b<a<c;故选C【点睛】本题考查函数的奇偶性与单调性的判断以及性质的应用,属于基础题.3、D【解析】先由,得函数周期为6,得到f(7)=f(1);再利用y=f(x+3)的图象关于y轴对称得到y=f(x)的图象关于x=3轴对称,进而得到f(1)=f(5);最后利用条件(2)得出结论因为,所以;即函数周期为6,故;又因为的图象关于y轴对称,所以的图象关于x=3对称,所以;又对任意,都有;所以故选:D考点:函数的奇偶性和单调性;函数的周期性.4、A【解析】由已知、同角三角函数关系、辅助角公式及诱导公式可得解.【详解】由得,∴.故选:A.5、A【解析】由扇形的面积公式即可求解.【详解】解:设扇形圆心角的弧度数为,则扇形面积为,解得,因为,所以扇形的圆心角的弧度数为4.故选:A6、B【解析】根据为偶函数,可得;根据在上递减得;然后解一元二次不等式可得【详解】解:为偶函数,所以,即,,由在上单调递减,所以,,可化为,即,解得或故选:【点睛】本题主要考查奇偶性与单调性的应用以及一元二次不等式的解法,还考查了运算求解的能力,属于中档题.7、D【解析】由可得,由单调性即可判定在和上的符号,再由奇偶性判定在和上的符号,即可求解.【详解】∵即,∵在上单调递增,∴当时,,此时,当时,,此时,又∵是定义在上的奇函数,∴在上单调递增,且,当时,,此时,当时,,此时,综上可知,的解集为,故选:D【点睛】本题考查了函数的奇偶性和单调性的交汇,求得函数在各个区间上的符号是关键,考查了推理能力,属于中档题.8、B【解析】构造函数,则函数的零点所在的区间即所在的区间,由于连续,且:,,由函数零点存在定理可得:所在的区间是.本题选择B选项.9、B【解析】分别将选项中区间的端点代入,利用零点存在性定理判断即可【详解】由题,,,,所以,故选:B【点睛】本题考查利用零点存在性定理判断零点所在区间,属于基础题10、B【解析】因为,所以.选B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】设,或为增函数,在为增函数,根据复合函数单调性“同增异减”可知:函数单调递增区间是.12、64【解析】由题意可求得点,求出幂函数的解析式,从而求得.【详解】令,则,故点;设幂函数,则,则;故;故答案为:64.13、【解析】14、[【解析】利用函数的奇偶性、单调性去掉不等式中的符号“f”,可转化为具体不等式,注意函数定义域【详解】解:由f(2a+1)+f(4a-3)>0得f(2a+1)>-f(4a-3),又f(x)为奇函数,得-f(4a-3)=f(3-4a),∴f(2a+1)>f(3-4a),又f(x)是定义在[-2,2]上的减函数,∴解得:1即a∈故答案为:1【点睛】本题考查函数的奇偶性、单调性的综合应用,考查转化思想,解决本题的关键是利用性质去掉符号“f”15、【解析】由正弦函数的单调性以及图象的分析得出的取值范围.【详解】因为在上是增函数,所以,解得因为直线与的图象在上恰有一个交点,所以,解得,综上.故答案为:16、3【解析】由同角三角函数商数关系及已知等式可得,应用诱导公式有,即可求值.【详解】由题设,,可得,∴.故答案为:3三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据给定条件可得,再利用诱导公式化简计算作答.(2)由给定条件求出,再利用和角公式、倍角公式计算作答.【小问1详解】依题意,,所以.【小问2详解】因点的横坐标为,而点在第一象限,则点,即有,于是得,,,,所以.18、(1);(2).【解析】(1)根据集合的运算法则计算;(2)由得,然后分类和求解【详解】(1)当时,中不等式为,即,∴或,则(2)∵,∴,①当时,,即,此时;②当时,,即,此时.综上的取值范围为.19、(1);(2).【解析】(1)由题意可知,方程的两根为,结合根与系数的关系得出的值;(2)根据一元二次不等式的解法求解即可.【详解】(1)由题意可知,方程的两根为由根与系数的关系可知,,解得(2)由(1)可知,,即,解得即该不等式的解集为【点睛】本题主要考查了一元二次不等式的解法,属于中档题.20、(1).(2).(3).【解析】(1)由函数过点,代入函数即可得的值;(2)由可得的取值范围;(3)由函数的大致图象即可得的取值范围.试题解析:(1),,,.(2),,.(3)当时,是减函数,值域为.偶函数,时,是增函数,值域为,函数有两个零点时,.点睛:已知函数零点的个数(方程根的个数)求参数值(取值范围)的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解,对于一些比较复杂的函数的零点问题常用此方法求解.本题中在结合函数图象分析得基础上还用到了方程根的分布的有关知识21、(1);(2)或;(3)【解析】(1)先求出二次函数的图象与坐标轴的三个交点的坐标,然后根据待定系数法求解可得圆的标准方程;(2)根据圆心到直线的距离等于半径可得实数的值;(3)结合弦长公式可得所求实数的值【详解】(1)在中,令,可得;令,可得或所以三个交点分别为,,,设圆的方程为,将三个点的坐标代入上式得,解得,所以圆的方程为,化为标准方程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国钠离子电池产业化进程与对锂电市场替代效应预测
- 2025年英国共享单车行业竞争十年趋势报告
- 零售店长业绩与团队管理绩效考核表
- 2025年水产养殖考试题目及答案
- 电商行业运营策略实施效果绩效评定表
- 2025年危急值考核试题及答案
- 2025年煤气证考试题库及答案
- 润滑剂生产线项目商业计划书
- 2026年网络安全领域资深工程师面试问题集
- 2026年制造业生产经理招聘面试题目详解
- 团支部培训课件
- 北京市朝阳区人民法院人身保险合同纠纷案件审判白皮书(2020年度-2024年度)
- 种植项目预算方案(3篇)
- 会场各项设备管理制度
- 《国际货代基础》 课件 项目五任务一 体验国际海运代理业务
- 电镀厂员工工作报告总结
- 高精度体温计与红外测温仪行业深度调研及发展项目商业计划书
- 盒马生鲜合作协议书
- 直播中控合同协议
- 新闻传播学媒介伦理与法规试卷
- 医保中心对定点二级医院建立住院信息月报制度
评论
0/150
提交评论