河北省临西县2026届高二数学第一学期期末达标检测试题含解析_第1页
河北省临西县2026届高二数学第一学期期末达标检测试题含解析_第2页
河北省临西县2026届高二数学第一学期期末达标检测试题含解析_第3页
河北省临西县2026届高二数学第一学期期末达标检测试题含解析_第4页
河北省临西县2026届高二数学第一学期期末达标检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省临西县2026届高二数学第一学期期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.古希腊数学家阿波罗尼斯的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数且的点的轨迹是圆,后人将之称为阿波罗尼斯圆.现有椭圆为椭圆长轴的端点,为椭圆短轴的端点,,分别为椭圆的左右焦点,动点满足面积的最大值为面积的最小值为,则椭圆的离心率为()A. B.C. D.2.在中,角,,所对的边分别为,,,若,,,则A. B.2C.3 D.3.已知双曲线E的渐近线为,则其离心率为()A. B.C. D.或4.若两条直线与互相垂直,则的值为()A.4 B.-4C.1 D.-15.已知,是双曲线C:(,)的两个焦点,过点与x轴垂直的直线与双曲线C交于A、B两点,若是等腰直角三角形,则双曲线C的离心率为()A. B.C. D.6.已知函数在定义域内单调递减,则实数的取值范围是()A. B.C. D.7.在等比数列中,,则的公比为()A. B.C. D.8.已知椭圆的左,右两个焦点分别为,若椭圆C上存在一点A,满足,则椭圆C的离心率的取值范围是()A. B.C. D.9.设太阳光线垂直于平面,在阳光下任意转动棱长为一个单位的立方体,则它在平面上的投影面积的最大值是()A.1 B.C. D.10.已知,则()A. B.1C. D.11.已知,,若,则实数的值为()A. B.C. D.212.在正方体中,为棱的中点,为棱的中点,则直线与平面所成角的正弦值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在圆M:中,过点的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为___________.14.已知函数则的值为.____15.函数的导数_________________.16.如图,四棱锥的底面是正方形,底面,为的中点,若,则点到平面的距离为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,扇形AOB的半径为2,圆心角,点C为弧AB上一点,平面AOB且,点且,面MOC(1)求证:平面平面POB;(2)求平面POA与平面MOC所成二面角的正弦值的大小18.(12分)设函数.(1)当k=1时,求函数的单调区间;(2)当时,求函数在上的最小值m和最大值M.19.(12分)唐代诗人李颀的诗《古从军行》开头两句说:“白日登上望烽火,黄昏饮马傍交河,”诗中隐含着一个有趣的“将军饮马”问题,这是一个数学问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回军营,怎样走才能使得总路程最短?在平面直角坐标系中,将军从点处出发,河岸线所在直线方程为,并假定将军只要到达军营所在区域即为回到军营.军营所在区域可表示为.(1)求“将军饮马”的最短总路程;(2)因军情紧急,将军来不及饮马,直接从A点沿倾斜角为45°的直线路径火速回营,已知回营路径与军营边界的交点为M,N,军营中心与M,N连线的斜率分别为,,试求的值.20.(12分)如图,在直三棱柱中,,,,为的中点,点,分别在棱,上,,.(1)求点到直线的距离(2)求平面与平面夹角的余弦值.21.(12分)已知动点到点的距离与点到直线的距离相等.(1)求动点的轨迹方程;(2)若过点且斜率为的直线与动点的轨迹交于、两点,求三角形AOB的面积.22.(10分)已知是数列的前n项和,且.(1)求数列的通项公式;(2)若,求的前n项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由题可得动点M的轨迹方程,可得,,即求.【详解】设,,由,可得=2,化简得.∵△MAB面积的最大值为面积的最小值为,∴,,∴,即,∴故选:A2、A【解析】利用正弦定理,可直接求出的值.【详解】在中,由正弦定理得,所以,故选A.【点睛】本题考查利用正弦定理求边,要记得正弦定理所适用的基本类型,考查计算能力,属于基础题3、D【解析】根据双曲线标准方程与渐近线的关系即可求解.【详解】当双曲线焦点在x轴上时,渐近线为,故离心率为;当双曲线焦点在y轴上时,渐近线为,故离心率为;故选:D.4、A【解析】根据两直线垂直的充要条件知:,即可求的值.【详解】由两直线垂直,可知:,即.故选:A5、B【解析】根据等腰直角三角形的性质,结合双曲线的离心率公式进行求解即可.【详解】由题意不妨设,,当时,由,不妨设,因为是等腰直角三角形,所以有,或舍去,故选:B6、D【解析】由题意转化为,恒成立,参变分离后转化为,求函数的最大值,即可求解.【详解】函数的定义域是,,若函数在定义域内单调递减,即在恒成立,所以,恒成立,即设,,当时,函数取得最大值1,所以.故选:D7、D【解析】利用等比数列的性质把方程都变成和有关的式子后进行求解.【详解】由等比数列的等比中项性质可得,又,所以,因,所以,所以,故选:D.8、C【解析】根据题意可知当A为椭圆的上下顶点时,即可满足椭圆C上存在一点A,使得,由此可得,解此不等式可得答案.【详解】由椭圆的对称性可知,当A为椭圆的上下顶点时,最大,故只需即可满足题意,设O为坐标原点,则只需,即有,所以,解得,故选:C9、C【解析】确定正方体投影面积最大时,是投影面与平面AB'C平行,从而求出投影面积的最大值.【详解】设正方体投影最大时,是投影面与平面AB'C平行,三个面的投影为两个全等的菱形,其对角线为,即投影面上三条对角线构成边长为的等边三角形,如图所示,所以投影面积为故选:C10、B【解析】先根据共轭复数的定义可得,再根据复数的运算法则即可求出【详解】因为,所以故选:B11、D【解析】由,然后根据向量数量积的坐标运算即可求解.【详解】解:因,,所以,因为,所以,即,解得,故选:D.12、D【解析】建立空间直角坐标系,计算平面的法向量,利用线面角的向量公式即得解【详解】不妨设正方体的棱长为2,连接,以为坐标原点如图建立空间直角坐标系,则,,,,,,由于平面,平面,故又正方形,故平面故平面,所以为平面的一个法向量,故直线与平面所成角正弦值为.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】首先将圆的方程配成标准式,即可得到圆心坐标与半径,从而可得点在圆内,即可得到过点的最长弦、最短弦弦长,即可求出四边形的面积;【详解】解:圆M:,即,圆心,半径,点,则,所以点在圆内,所以过点的最长弦,又,所以最短弦,所以故答案为:14、-1【解析】详解】试题分析:由题意,得,所以,解得,所以考点:导数的运算15、.【解析】根据初等函数的导数法则和导数的四则运算法则,准确运算,即可求解.【详解】由题意,函数,可得.故答案为:.16、【解析】以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法可求得点到平面的距离.【详解】因为底面,,以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,则、、、,设平面的法向量为,,,则,取,可得,,所以,点到平面的距离为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)连接,设与相交于点,连接MN,利用余弦定理可求得,,的长度,进而得到,又,由此可得平面,最后利用面面垂直的判定定理即可得证;(2)建立恰当空间直角坐标系,求出两个平面的法向量,然后利用向量法求解二面角的余弦值,从而即可得答案【小问1详解】证明:连接,设与相交于点,连接MN,平面,在平面内,平面平面,,,,在中,由余弦定理可得,,,又在中,,由余弦定理可得,,,故,又平面,在平面内,,又,平面,又平面,平面平面;【小问2详解】解:由(1)可知直线,,两两互相垂直,所以以点为坐标原点,建立如图所示的空间直角坐标系,则,所以,,设平面的一个法向量为,则,可取;设平面的一个法向量为,则,可取,,平面与平面所成二面角的正弦值为18、(1)增区间为(2),【解析】(1)求导,由判别式可判断导数符号,然后可得;(2)求导,求导数零点,比较函数极值和端点函数值,结合单调性可得.【小问1详解】因为,所以,,因为,所以恒成立所以的增区间为.【小问2详解】当时,,令,解得,当时,,当时,,当时,所以,函数在上单调递增,在上单调递减,在上单调递增.因为,所以在区间上的最大值,最小值为19、(1);(2).【解析】(1)根据题意作出图形,然后求出关于直线的对称点,进而根据圆的性质求出到圆上的点的最短距离即可;(2)将直线方程代入圆的方程并化简,进而结合韦达定理求得答案.【小问1详解】若军营所在区域为,圆:的圆心为原点,半径为,作图如下:设将军饮马点为,到达营区点为,设为A关于直线的对称点,因为,所以线段的中点为,则,又,联立解得:,即,所以总路程,要使得总路程最短,只需要最短,即点到圆上的点的最短距离,即为.【小问2详解】过点A倾斜角为45°的直线方程为:,设两个交点,联立,消去y得.由韦达定理,,.20、(1);(2).【解析】(1)由直棱柱的性质及勾股定理求出△各边长,应用余弦定理求,进而可得其正弦值,再求边上的高即可.(2)以为原点,,,所在直线为x轴、y轴、z轴,建立空间直角坐标系,然后求出两个平面的法向量,然后可算出答案.【小问1详解】如图,连接,由题设,,,,由直棱柱性质及,在中,在中,在中,在中,所以在△中,,则,所以到直线的距离.【小问2详解】以为原点,,,所在直线为x轴、y轴、z轴,建立如图所示的空间直角坐标系易知:,,,则,因为平面,所以平面的一个法向量为设平面的法向量为,则,取,则,所以,即平面与平面的夹角的余弦值为21、(1)(2)【解析】小问1:由抛物线的定义可求得动点的轨迹方程;小问2:可知直线的方程为,设点、,将直线的方程与

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论