版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省德州市平原县第一中学2026届数学高三上期末监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.椭圆的焦点为,点在椭圆上,若,则的大小为()A. B. C. D.2.已知集合A={x|–1<x<2},B={x|x>1},则A∪B=A.(–1,1) B.(1,2) C.(–1,+∞) D.(1,+∞)3.已知等差数列中,,则()A.20 B.18 C.16 D.144.已知直线,,则“”是“”的A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件5.第24届冬奥会将于2022年2月4日至2月20日在北京市和张家口市举行,为了解奥运会会旗中五环所占面积与单独五个环面积之和的比值P,某学生做如图所示的模拟实验:通过计算机模拟在长为10,宽为6的长方形奥运会旗内随机取N个点,经统计落入五环内部及其边界上的点数为n个,已知圆环半径为1,则比值P的近似值为()A. B. C. D.6.小明有3本作业本,小波有4本作业本,将这7本作业本混放在-起,小明从中任取两本.则他取到的均是自己的作业本的概率为()A. B. C. D.7.设点,,不共线,则“”是“”()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分又不必要条件8.已知数列中,,(),则等于()A. B. C. D.29.已知函数的定义域为,则函数的定义域为()A. B.C. D.10.已知函数若关于的方程有六个不相等的实数根,则实数的取值范围为()A. B. C. D.11.设过定点的直线与椭圆:交于不同的两点,,若原点在以为直径的圆的外部,则直线的斜率的取值范围为()A. B.C. D.12.将函数的图象沿轴向左平移个单位长度后,得到函数的图象,则“”是“是偶函数”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.展开式中的系数的和大于8而小于32,则______.14.已知,则展开式中的系数为__15.内角,,的对边分别为,,,若,则__________.16.已知以x±2y=0为渐近线的双曲线经过点,则该双曲线的标准方程为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,四棱锥中,平面平面,底面为梯形.,且与均为正三角形.为的中点为重心,与相交于点.(1)求证:平面;(2)求三棱锥的体积.18.(12分)已知函数存在一个极大值点和一个极小值点.(1)求实数a的取值范围;(2)若函数的极大值点和极小值点分别为和,且,求实数a的取值范围.(e是自然对数的底数)19.(12分)如图,设A是由个实数组成的n行n列的数表,其中aij(i,j=1,2,3,…,n)表示位于第i行第j列的实数,且aij{1,-1}.记S(n,n)为所有这样的数表构成的集合.对于,记ri(A)为A的第i行各数之积,cj(A)为A的第j列各数之积.令a11a12…a1na21a22a2n…………an1an2…ann(Ⅰ)请写出一个AS(4,4),使得l(A)=0;(Ⅱ)是否存在AS(9,9),使得l(A)=0?说明理由;(Ⅲ)给定正整数n,对于所有的AS(n,n),求l(A)的取值集合.20.(12分)已知数列的前项和为,且满足.(1)求数列的通项公式;(2)若,,且数列前项和为,求的取值范围.21.(12分)在中,内角的对边分别是,已知.(1)求的值;(2)若,求的面积.22.(10分)已知函数(),不等式的解集为.(1)求的值;(2)若,,,且,求的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
根据椭圆的定义可得,,再利用余弦定理即可得到结论.【详解】由题意,,,又,则,由余弦定理可得.故.故选:C.【点睛】本题考查椭圆的定义,考查余弦定理,考查运算能力,属于基础题.2、C【解析】
根据并集的求法直接求出结果.【详解】∵,∴,故选C.【点睛】考查并集的求法,属于基础题.3、A【解析】
设等差数列的公差为,再利用基本量法与题中给的条件列式求解首项与公差,进而求得即可.【详解】设等差数列的公差为.由得,解得.所以.故选:A【点睛】本题主要考查了等差数列的基本量求解,属于基础题.4、C【解析】
先得出两直线平行的充要条件,根据小范围可推导出大范围,可得到答案.【详解】直线,,的充要条件是,当a=2时,化简后发现两直线是重合的,故舍去,最终a=-1.因此得到“”是“”的充分必要条件.故答案为C.【点睛】判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.5、B【解析】
根据比例关系求得会旗中五环所占面积,再计算比值.【详解】设会旗中五环所占面积为,由于,所以,故可得.故选:B.【点睛】本题考查面积型几何概型的问题求解,属基础题.6、A【解析】
利用计算即可,其中表示事件A所包含的基本事件个数,为基本事件总数.【详解】从7本作业本中任取两本共有种不同的结果,其中,小明取到的均是自己的作业本有种不同结果,由古典概型的概率计算公式,小明取到的均是自己的作业本的概率为.故选:A.【点睛】本题考查古典概型的概率计算问题,考查学生的基本运算能力,是一道基础题.7、C【解析】
利用向量垂直的表示、向量数量积的运算,结合充分必要条件的定义判断即可.【详解】由于点,,不共线,则“”;故“”是“”的充分必要条件.故选:C.【点睛】本小题主要考查充分、必要条件的判断,考查向量垂直的表示,考查向量数量积的运算,属于基础题.8、A【解析】
分别代值计算可得,观察可得数列是以3为周期的周期数列,问题得以解决.【详解】解:∵,(),
,
,
,
,
…,
∴数列是以3为周期的周期数列,
,
,
故选:A.【点睛】本题考查数列的周期性和运用:求数列中的项,考查运算能力,属于基础题.9、A【解析】试题分析:由题意,得,解得,故选A.考点:函数的定义域.10、B【解析】
令,则,由图象分析可知在上有两个不同的根,再利用一元二次方程根的分布即可解决.【详解】令,则,如图与顶多只有3个不同交点,要使关于的方程有六个不相等的实数根,则有两个不同的根,设由根的分布可知,,解得.故选:B.【点睛】本题考查复合方程根的个数问题,涉及到一元二次方程根的分布,考查学生转化与化归和数形结合的思想,是一道中档题.11、D【解析】
设直线:,,,由原点在以为直径的圆的外部,可得,联立直线与椭圆方程,结合韦达定理,即可求得答案.【详解】显然直线不满足条件,故可设直线:,,,由,得,,解得或,,,,,,解得,直线的斜率的取值范围为.故选:D.【点睛】本题解题关键是掌握椭圆的基础知识和圆锥曲线与直线交点问题时,通常用直线和圆锥曲线联立方程组,通过韦达定理建立起目标的关系式,考查了分析能力和计算能力,属于中档题.12、A【解析】
求出函数的解析式,由函数为偶函数得出的表达式,然后利用充分条件和必要条件的定义判断即可.【详解】将函数的图象沿轴向左平移个单位长度,得到的图象对应函数的解析式为,若函数为偶函数,则,解得,当时,.因此,“”是“是偶函数”的充分不必要条件.故选:A.【点睛】本题考查充分不必要条件的判断,同时也考查了利用图象变换求三角函数解析式以及利用三角函数的奇偶性求参数,考查运算求解能力与推理能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13、4【解析】
由题意可得项的系数与二项式系数是相等的,利用题意,得出不等式组,求得结果.【详解】观察式子可知,,故答案为:4.【点睛】该题考查的是有关二项式定理的问题,涉及到的知识点有展开式中项的系数和,属于基础题目.14、1.【解析】
由题意求定积分得到的值,再根据乘方的意义,排列组合数的计算公式,求出展开式中的系数.【详解】∵已知,则,
它表示4个因式的乘积.
故其中有2个因式取,一个因式取,剩下的一个因式取1,可得的项.
故展开式中的系数.
故答案为:1.【点睛】本题主要考查求定积分,乘方的意义,排列组合数的计算公式,属于中档题.15、【解析】∵,∴,即,∴,∴.16、【解析】
设双曲线方程为,代入点,计算得到答案.【详解】双曲线渐近线为,则设双曲线方程为:,代入点,则.故双曲线方程为:.故答案为:.【点睛】本题考查了根据渐近线求双曲线,设双曲线方程为是解题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】
(1)第(1)问,连交于,连接.证明//,即证平面.(2)第(2)问,主要是利用体积变换,,求得三棱锥的体积.【详解】(1)方法一:连交于,连接.由梯形,且,知又为的中点,为的重心,∴在中,,故//.又平面,平面,∴平面.方法二:过作交PD于N,过F作FM||AD交CD于M,连接MN,G为△PAD的重心,又ABCD为梯形,AB||CD,又由所作GN||AD,FM||AD,得//,所以GNMF为平行四边形.因为GF||MN,(2)方法一:由平面平面,与均为正三角形,为的中点∴,,得平面,且由(1)知//平面,∴又由梯形ABCD,AB||CD,且,知又为正三角形,得,∴,得∴三棱锥的体积为.方法二:由平面平面,与均为正三角形,为的中点∴,,得平面,且由,∴而又为正三角形,得,得.∴,∴三棱锥的体积为.18、(1);(2).【解析】
(1)首先对函数求导,根据函数存在一个极大值点和一个极小值点求出a的取值范围;(2)首先求出的值,再根据求出实数a的取值范围.【详解】(1)函数的定义域为是,,若有两个极值点,则方程一定有两个不等的正根,设为和,且,所以解得,此时,当时,,当时,,当时,,故是极大值点,是极小值点,故实数a的取值范围是;(2)由(1)知,,,则,,,由,得,即,令,考虑到,所以可化为,而,所以在上为增函数,由,得,故实数a的取值范围是.【点睛】本题主要考查了利用导数研究函数的极值点和单调性,利用函数单调性证明不等式,属于难题.19、(Ⅰ)答案见解析;(Ⅱ)不存在,理由见解析;(Ⅲ)【解析】
(Ⅰ)可取第一行都为-1,其余的都取1,即满足题意;(Ⅱ)用反证法证明:假设存在,得出矛盾,从而证明结论;(Ⅲ)通过分析正确得出l(A)的表达式,以及从A0如何得到A1,A2……,以此类推可得到Ak.【详解】(Ⅰ)答案不唯一,如图所示数表符合要求.(Ⅱ)不存在AS(9,9),使得l(A)=0,证明如下:假如存在,使得.因为,,所以,,...,,,,...,这18个数中有9个1,9个-1.令.一方面,由于这18个数中有9个1,9个-1,从而①,另一方面,表示数表中所有元素之积(记这81个实数之积为m);也表示m,从而②,①,②相矛盾,从而不存在,使得.(Ⅲ)记这个实数之积为p.一方面,从“行”的角度看,有;另一方面,从“列”的角度看,有;从而有③,注意到,,下面考虑,,...,,,,...,中-1的个数,由③知,上述2n个实数中,-1的个数一定为偶数,该偶数记为,则1的个数为2n-2k,所以,对数表,显然.将数表中的由1变为-1,得到数表,显然,将数表中的由1变为-1,得到数表,显然,依此类推,将数表中的由1变为-1,得到数表,即数表满足:,其余,所以,,所以,由k的任意性知,l(A)的取值集合为.【点睛】本题为数列的创新应用题,考查数学分析与思考能力及推理求解能力,解题关键是读懂题意,根据引入的概念与性质进行推理求解,属于较难题.20、(1)(2)【解析】
(1)由,可求,然后由时,可得,根据等比数列的通项可求(2)由,而,利用裂项相消法可求.【详解】(1)当时,,解得,当时,①②②①得,即,数列是以2为首项,2为公比的等比数列,;(2)∴,∴,,.【点睛】本题考查递推公式在数列的通项求解中的应用,等比数列的通项公式、裂项求和方法,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.21、(1);(2).【解析】
(1)由,利用余弦定理可得,结合可得结果;(2)由正弦定理,,利用三角形内角和定理可得,由三角形面积公式可得结果.【详解】(1)由题意,得.∵.∴,∵,∴.(2)∵,由正弦定理,可得.∵a>b,∴,∴.∴.【点睛】本题主要考查正弦定理、余弦定理及特殊角的三角函数,属于中档题.对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数值,以便
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 部编版六年级语文上册期末模拟试卷(5)(含答案)
- 中学学生社团活动经费管理考核制度
- 广州市公务员考试行测试题及答案
- 2026年德阳农业科技职业学院单招职业适应性测试题库附答案
- 2026年书记员考试题库附答案(考试直接用)
- 知情同意书管理制度
- 2026年心理咨询师之心理咨询师基础知识考试题库及答案参考
- 广东省公务员考试模拟试题及答案
- 古典名著《水浒传》填空题及参考答案【预热题】
- 广东公务员法考试试题及答案
- GB/T 1040.1-2025塑料拉伸性能的测定第1部分:总则
- GB/T 40565.2-2025液压传动连接快换接头第2部分:平面型
- 2025-2030中国曲氟尿苷替匹嘧啶片行业市场现状分析及竞争格局与投资发展研究报告
- GB/T 3543.11-2025农作物种子检验规程第11部分:品种质量品种真实性鉴定
- 人力资源有限公司管理制度
- 2024年高中语文选择性必修上册古诗文情境式默写(含答案)
- 部编人教版4年级上册语文期末复习(单元复习+专项复习)教学课件
- 2024-2025学年云南省玉溪市八年级(上)期末英语试卷(含答案无听力原文及音频)
- 绿色建材生产合作协议
- 英语丨安徽省皖江名校联盟2025届高三12月联考英语试卷及答案
- 湖南省长沙市长2024年七年级上学期数学期末考试试卷【附答案】
评论
0/150
提交评论