版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省浏阳市三中2026届高一数学第一学期期末质量跟踪监视试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.经过点(2,1)的直线l到A(1,1),B(3,5)两点的距离相等,则直线l的方程为A.2x-y-3=0 B.x=2C.2x-y-3=0或x=2 D.都不对2.如图,在正三棱锥中,,点为棱的中点,则异面直线与所成角的大小为()A.30° B.45°C.60° D.90°3.为了得到函数的图象,只需将函数的图象()A.向右平移个单位长度 B.向左平移个单位长度C.向右平移个单位长度 D.向左平移个单位长度4.已知,则的值为()A. B.C. D.5.设,,,则a、b、c的大小关系是A. B.C. D.6.,是两个平面,,是两条直线,则下列命题中错误的是()A.如果,,,那么B.如果,,那么C.如果,,,那么D.如果,,,那么7.是第四象限角,,则等于A. B.C. D.8.已知.则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件9.设奇函数在上为增函数,且,则不等式的解集为A. B.C. D.10.平行四边形中,若点满足,,设,则A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的单调增区间是______12.已知,则__________13.已知集合,则集合的子集个数为___________.14.下列四个命题:①函数与的图象相同;②函数的最小正周期是;③函数的图象关于直线对称;④函数在区间上是减函数其中正确的命题是__________(填写所有正确命题的序号)15.已知函数,若函数在区间内有3个零点,则实数的取值范围是______16.设当时,函数取得最大值,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.函数是奇函数.(1)求的解析式;(2)当时,恒成立,求m的取值范围18.要建造一段5000m的高速公路,工程队需要把600人分成两组,一组完成一段2000m的软土地带公路的建造任务,同时另一组完成剩下的3000m的硬土地带公路的建造任务.据测算,软、硬土地每米公路的工程量分别是50人/天和30人/天,设在软土地带工作的人数x人,在软土、硬土地带筑路的时间分别记为,(1)求,;(2)求全队的筑路工期;(3)如何安排两组人数,才能使全队筑路工期最短?19.某汽车配件厂拟引进智能机器人来代替人工进行某个操作,以提高运作效率和降低人工成本,已知购买x台机器人的总成本为(万元)(1)若使每台机器人的平均成本最低,问应买多少台?(2)现按(1)中求得的数量购买机器人,需要安排m人协助机器人,经实验知,每台机器人的日平均工作量(单位:次),已知传统人工每人每日的平均工作量为400次,问引进机器人后,日平均工作量达最大值时,用人数量比引进机器人前工作量达此最大值时的用人数量减少百分之几?20.已知函数,若函数的定义域为集合,则当时,求函数的值域.21.已知角的顶点与原点重合,始边与轴的非负半轴重合,它的终边在直线上.(1)求的值;(2)求值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】当直线l的斜率不存在时,直线x=2显然满足题意;当直线l的斜率存在时,设直线l的斜率为k则直线l为y-1=kx-2,即由A到直线l的距离等于B到直线l的距离得:-kk化简得:-k=k-4或k=k-4(无解),解得k=2∴直线l的方程为2x-y-3=0综上,直线l的方程为2x-y-3=0或x=2故选C2、C【解析】取BC的中点E,∠DFE即为所求,结合条件即求.【详解】如图取BC的中点E,连接EF,DE,则EF∥AB,∠DFE即为所求,设,在正三棱锥中,,故,∴,∴,即异面直线与所成角的大小为.故选:C.3、D【解析】根据诱导公式可得,结合三角函数的平移变换即可得出结果.【详解】函数;将函数的图象向左平移个单位长度得到,故选:D4、B【解析】在所求分式的分子和分母中同时除以,结合两角差的正切公式可求得结果.【详解】.故选:B.5、D【解析】根据指数函数与对数函数性质知,,,可比较大小,【详解】解:,,;故选D【点睛】在比较幂或对数大小时,一般利用指数函数或对数函数的单调性,有时还需要借助中间值与中间值比较大小,如0,1等等6、D【解析】A.由面面垂直的判定定理判断;B.由面面平行的性质定理判断;C.由线面平行的性质定理判断;D.由平面与平面的位置关系判断;【详解】A.如果,,,由面面垂直的判定定理得,故正确;B.如果,,由面面平行的性质定理得,故正确;C.如果,,,由线面平行的性质定理得,故正确;D如果,,,那么相交或平行,故错误;故选:D【点睛】本题主要考查空间中线线、线面、面面间的位置关系,还考查了理解辨析和逻辑推理的能力,属于中档题.7、B【解析】由的值及α为第四象限角,利用同角三角函数间的基本关系求出cosα的值,即可确定出的值【详解】由题是第四象限角,则故选B【点睛】此题考查了同角三角函数间的基本关系,熟练掌握基本关系是解本题的关键8、A【解析】求解出成立的充要条件,再与分析比对即可得解.【详解】,,则或,由得,由得,显然,,所以“”是“”的充分不必要条件.故选:A【点睛】结论点睛:充分不必要条件的判断:p是q的充分不必要条件,则p对应集合是q对应集合的真子集.9、D【解析】由f(x)为奇函数可知,=<0.而f(1)=0,则f(-1)=-f(1)=0.当x>0时,f(x)<0=f(1);当x<0时,f(x)>0=f(-1)又∵f(x)在(0,+∞)上为增函数,∴奇函数f(x)在(-∞,0)上为增函数所以0<x<1,或-1<x<0.选D点睛:解函数不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内10、B【解析】画出平行四边形,在上取点,使得,在上取点,使得,由图中几何关系可得到,即可求出的值,进而可以得到答案【详解】画出平行四边形,在上取点,使得,在上取点,使得,则,故,,则.【点睛】本题考查了平面向量的线性运算,考查了平面向量基本定理的应用,考查了平行四边形的性质,属于中档题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先求出函数定义域,再换元,利用复合函数单调性的求法求解【详解】由,得,所以函数的定义域为,令,则,因为在上递增,在上递减,而在上为增函数,所以在上递增,在上递减,故答案为:12、【解析】将题干中的两个等式先平方再相加,利用两角差的余弦公式可求得结果.【详解】由,,两式相加有,可得故答案为:.13、2【解析】先求出然后直接写出子集即可.【详解】,,所以集合的子集有,.子集个数有2个.故答案为:2.14、①②④【解析】首先需要对命题逐个分析,利用三角函数的相关性质求得结果.【详解】对于①,,所以两个函数的图象相同,所以①对;对于②,,所以最小正周期是,所以②对;对于③,因为,所以,,,因为,所以函数的图象不关于直线对称,所以③错,对于④,,当时,,所以函数在区间上是减函数,所以④对,故答案为①②④【点睛】该题考查的是有关三角函数的性质,涉及到的知识点有利用诱导公式化简函数解析式,余弦函数的周期,正弦型函数的单调性,属于简单题目.15、【解析】函数在区间内有3个零点,等价于函数和的图象在区间内有3个交点,作出函数和的图象,利用数形结合可得结果【详解】若,则,,若,则,,若,则,,,,,,设和,则方程在区间内有3个不等实根,等价为函数和在区间内有3个不同的零点作出函数和的图象,如图,当直线经过点时,两个图象有2个交点,此时直线为,当直线经过点,时,两个图象有3个交点;当直线经过点和时,两个图象有3个交点,此时直线为,当直线经过点和时,两个图象有3个交点,此时直线为,要使方程,两个图象有3个交点,在区间内有3个不等实根,则,故答案为【点睛】本题主要考查函数的零点与方程根的个数的应用,以及数形结合思想的应用,属于难题16、【解析】利用辅助角公式化简函数解析式,再根据最值情况可得解.【详解】由辅助角公式可知,,,,当,时取最大值,即,,故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)直接由奇函数的定义列方程求解即可;(2)由条件得在恒成立,转为求不等式右边函数的最小值即可得解.【详解】(1)函数是奇函数,,故,故;(2)当时,恒成立,即在恒成立,令,,显然在的最小值是,故,解得:【点睛】本题主要考查了奇函数求参及不等式恒成立求参,涉及参变分离的思想,属于基础题.18、(1),,,(2),且(3)安排316人到软土地带工作,284人到硬土地带工作时,可以使全队筑路工期最短【解析】(1)由题意分别计算在软土、硬土地带筑路的时间即可;(2)由得到零点,即可得到分段函数;(3)利用函数的单调性即可得到结果.【小问1详解】在软土地带筑路时间为:,在硬土地带筑路时间为,,【小问2详解】全队的筑路工期为由于,即,得从而,即,且.【小问3详解】函数区间上递减,在区间上递增,所以是函数的最小值点但不是整数,于是计算和,其中较小者即为所求于是安排316人到软土地带工作,284人到硬土地带工作时,可以使全队筑路工期最短19、(1)8台(2)【解析】(1)根据题意将问题转化为对的求解,利用基本不等式即可;(2)先求出一台机器人的最大日工作量,根据最大工作量再求出所需要的人数,通过比较即可求解.【小问1详解】由题意当且仅当,即时,等号成立,所以应购买8台,可使每台机器人的平均成本最低【小问2详解】由,可得当时,,所以时,每台机器人的日平均工作量最大时,安排的人工数最小为20人,而此时人工操作需要的人工数为,所以可减少20、【解析】先求函数的定义域集合,再求函数的值域【详解】由,得,所以函数的值域为【点睛】求函数值域要先准确求出函数的定义域,注意函数解析式有意义的条件,及题目对自变量的限制条件21、(1)或;(2)或;【解析】(1)在直线上任取一点,由已知角的终边过点,利用诱导公式与三角函数定义即可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 机械安全防护要求
- 护理产品竞争对手分析
- CADCAM技术应用项目教程课件:曲线功能
- 《人工智能通识》-项目5-5 AIGC视频生成应用 - 人工智能伦理案例
- 《猫病防治技术》课件-第33讲 猫口炎的治疗处置
- 儿科危重患儿护理实践案例分享
- 中职内科护理康复护理
- 普外科营养支持护理
- 安全培训计划大纲制度课件
- 机场地勤培训课件
- 美国技术贸易壁垒对我国电子产品出口的影响研究-以F企业为例
- 2025至2030中国电站汽轮机行业项目调研及市场前景预测评估报告
- 泌尿系统疾病总论
- 靶向阿托品递送系统设计-洞察及研究
- 救护车急救护理查房
- 安徽省工会会员管理办法
- 阳原王瑞雪培训课件
- CJ/T 186-2018地漏
- 2025年四川省成都市青羊区中考语文一模试卷
- 交熟食技术协议书
- 发改价格〔2007〕670号建设工程监理与相关服务收费标准
评论
0/150
提交评论