版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省郴州市一中2026届高二上数学期末监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.东汉末年的数学家赵爽在《周髀算经》中利用一副“弦图”,根据面积关系给出了勾股定理的证明,后人称其为“赵爽弦图”.如图1,它由四个全等的直角三角形与一个小正方形拼成的一个大正方形.我们通过类比得到图2,它是由三个全等的钝角三角形与一个小等边三角形拼成的一个大等边三角形.对于图2.下列结论正确的是()①这三个全等的钝角三角形不可能是等腰三角形;②若,,则;③若,则;④若是的中点,则三角形的面积是三角形面积的7倍.A.①②④ B.①②③C.②③④ D.①③④2.已知数列为等比数列,若,,则的值为()A.8 B.C.16 D.±163.过点(1,0)且与直线x-2y-2=0平行的直线方程是()A.x-2y-1=0 B.x-2y+1=0C.2x+y-2=0 D.x+2y-1=04.用数学归纳法证明“”时,由假设证明时,不等式左边需增加的项数为()A. B.C. D.5.已知直线与x轴,y轴分别交于A,B两点,且直线l与圆相切,则的面积的最小值为()A.1 B.2C.3 D.46.如图,,是平面上两点,且,图中的一系列圆是圆心分别为,的两组同心圆,每组同心圆的半径分别是1,2,3,…,A,B,C,D,E是图中两组同心圆的部分公共点.若点A在以,为焦点的椭圆M上,则()A.点B和C都在椭圆M上 B.点C和D都在椭圆M上C.点D和E都在椭圆M上 D.点E和B都在椭圆M上7.直线与椭圆交于两点,以线段为直径的圆恰好经过椭圆的左焦点,则此椭圆的离心率为()A B.C. D.8.已知直线与直线垂直,则实数a为()A. B.或C. D.或9.已知圆与抛物线的准线相切,则实数p的值为()A.2 B.6C.3或8 D.2或610.设异面直线、的方向向量分别为,,则异面直线与所成角的大小为()A. B.C. D.11.为了解义务教育阶段学校对双减政策的落实程度,某市教育局从全市义务教育阶段学校中随机抽取了6所学校进行问卷调查,其中有4所小学和2所初级中学,若从这6所学校中再随机抽取两所学校作进一步调查,则抽取的这两所学校中恰有一所小学的概率是()A. B.C. D.12.三个实数构成一个等比数列,则圆锥曲线的离心率为()A. B.C.或 D.或二、填空题:本题共4小题,每小题5分,共20分。13.写出同时满足以下三个条件的数列的一个通项公式______.①不是等差数列,②是等比数列,③是递增数列14.已知函数,则不等式的解集为____________15.已知椭圆的右顶点为,直线与椭圆交于两点,若,则椭圆的离心率为___________.16.若双曲线的一条渐近线被圆所截得的弦长为2,则该双曲线的实轴长为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知三角形内角所对的边分别为,且C为钝角.(1)求cosA;(2)若,,求三角形的面积.18.(12分)设曲线在点(1,0)处的切线方程为.(1)求a,b的值;(2)求证:;(3)当,求a的取值范围.19.(12分)如图1是一张长方形铁片,,,,分别是,中点,,分别在边,上,且,将它卷成一个圆柱的侧面图2,使与重合,与重合.(1)求证:平面;(2)求几何体的体积.20.(12分)从某居民区随机抽取2021年的10个家庭,获得第个家庭的月收入(单位:千元)与月储蓄(单位:千元)的数据资料,计算得,,,(1)求家庭的月储蓄对月收入的线性回归方程;(2)判断变量与之间是正相关还是负相关;(3)利用(1)中的回归方程,分析2021年该地区居民月收入与月储蓄之间的变化情况,并预测当该居民区某家庭月收入为7千元,该家庭的月储蓄额.附:线性回归方程系数公式中,,,其中,为样本平均值21.(12分)已知数列的前项的和为,且.(1)求数列的通项公式;(2)设,求数列的前项和.22.(10分)已知圆,圆.(1)试判断圆C与圆M的位置关系,并说明理由;(2)若过点的直线l与圆C相切,求直线l的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】对于①,由三角形大边对大角的性质分析,对于②,根据题意利用正弦定理分析,对于③,利用余弦定理分析,对于④,利用三角形的面积公式分析判断【详解】对于①,根据题意,图2,它是由三个全等的钝角三角形与一个小等边三角形拼成的一个大等边三角形,故,,所以这三个全等的钝角三角形不可能是等腰三角形,故①正确;对于②,由题知,在中,,,,所以,所以由正弦定理得解得,因为,所以,故②正确;对于③,不妨设,所以在中,由余弦定理得,代入数据得,所以,所以,故③错误;对于④,若是的中点,则,所以,故④正确.故选:A第II卷(非选择题2、A【解析】利用等比数列的通项公式即可求解.【详解】因为为等比数列,设的公比为,则,,两式相除可得,所以,所以,故选:A.3、A【解析】设出直线方程,利用待定系数法得到结果.【详解】设与直线平行的直线方程为,将点代入直线方程可得,解得则所求直线方程为.故A正确【点睛】本题主要考查两直线的平行问题,属容易题.两直线平行倾斜角相等,所以斜率相等或均不存在.所以与直线平行的直线方程可设为4、C【解析】当成立,写出左侧的表达式,当时,写出对应的关系式,观察计算即可【详解】从到成立时,左边增加的项为,因此增加的项数是,故选:C5、A【解析】由直线与圆相切可得,再利用基本不等式即求.【详解】由已知可得,,因为直线与圆相切,所以,即,因为,当且仅当时取等号,所以,,所以面积的最小值为1.故选:A6、C【解析】根据椭圆的定义判断即可求解.【详解】因为,所以椭圆M中,因为,,,,所以D,E在椭圆M上.故选:C7、D【解析】根据题意作出示意图,根据圆的性质以及直线的倾斜角求解出的长度,再根据椭圆的定义求解出的关系,则椭圆离心率可求.【详解】设椭圆的左右焦点分别为,如下图:因为以线段为直径的圆恰好经过椭圆的左焦点,所以且,所以,又因为的倾斜角为,所以,所以为等边三角形,所以,所以,因为,所以,所以,所以,所以,故选:D.8、B【解析】由题可得,即得.【详解】∵直线与直线垂直,∴,解得或.故选:B.9、D【解析】由抛物线准线与圆相切,结合抛物线方程,令求切线方程且抛物线准线方程为,即可求参数p.【详解】圆的标准方程为:,故当时,有或,所以或,得或6故选:D10、C【解析】利用空间向量夹角的公式直接求解.【详解】,,,.由异面直线所成角的范围为,故异面直线与所成的角为.故选:C11、A【解析】由组合知识结合古典概型概率公式求解即可.【详解】从这6所学校中随机抽取两所学校的情况共有种,这两所学校中恰有一所小学的情况共有种,则其概率为.故选:A12、D【解析】根据三个实数构成一个等比数列,解得,然后分,讨论求解.【详解】因为三个实数构成一个等比数列,所以,解得,当时,方程表示焦点在x轴上的椭圆,所以,所以,当时,方程表示焦点在y轴上的双曲线,所以,所以,故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由条件②写出一个等比数列,再求出并确保单调递增即可作答.【详解】因是等比数列,令,当时,,,是递增数列,令是互不相等的三个正整数,且,若,,成等差数列,则,即,则有,显然、都是正整数,,都是偶数,于是得是奇数,从而有不成立,即,,不成等差数列,数列不成等差数列,所以.故答案为:14、【解析】易得函数为奇函数,则不等式即为不等式,利用导数判断函数得单调性,再根据函数得单调性解不等式即可.【详解】解:函数得定义域为R,因为,所以函数为奇函数,则不等式即为不等式,,所以函数在R上是增函数,所以,解得,即不等式的解集为.故答案为:.15、【解析】求出右顶点坐标,然后推出的纵坐标,利用已知条件列出方程,求解椭圆的离心率即可【详解】解:椭圆的右顶点为,直线与椭圆交于,两点,若,可知,不妨设在第一象限,所以的纵坐标为:,可得:,即,可得,,所以故答案为:16、2【解析】求得双曲线的一条渐近线方程,求得圆心和半径,运用点到直线的距离公式和弦长公式,可得a,b的关系,即可得到的值【详解】一渐近线x+ay=0,被圆(x-2)2+y2=4所截弦长为2,所以圆心到直线距为,即,a=1.所以双曲线的实轴长为2.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由正弦定理边化角,可求得角的正弦,由同角关系结合条件可得答案.(2)由(1),由余弦定理,求出边的长,进一步求得面积【小问1详解】因为,由正弦定理得因为,所以.因为角为钝角,所以角为锐角,所以小问2详解】由(1),由余弦定理,得,所以,解得或,不合题意舍去,故的面积为=18、(1)(2)证明见解析(3)【解析】(1)求导,根据导数的几何意义,令x=1处的切线的斜率等1,结合,即可求得a和b的值;(2)利用(1)的结论,构造函数,求求导数,判断单调性,求出最小值即可证明;(3)根据条件构造函数,求出其导数,分类讨论导数的值的情况,根据单调性,判断函数的最小值情况,即可求得答案.【小问1详解】由题意知:,因为曲线在点(1,0)处的切线方程为,故,即;【小问2详解】证明:由(1)知:,令,则,当时,,单调递减,当时,,单调递增,所以当时,取得极小值,也即最小值,最小值为,故,即成立;【小问3详解】当,即,(),设,(),则,当时,由得,此时,此时在时单调递增,,适合题意;当时,,此时在时单调递增,,适合题意;当时,,此时,此时在时单调递增,,适合题意;当时,,此时在内,,在内,,故,显然时,,不满足当恒成立,综上述:.19、(1)证明见解析.(2).【解析】(1)根据线面垂直的性质和判定可得证;(2)作圆柱的母线,由平面几何知识可得四边形为平行四边形,利用等体积法可求得,由几何体的体积,可求得答案.【小问1详解】证明:∵是直径,∴,∵平面,平面,∴,∵平面,平面,,∴平面;【小问2详解】如图,作圆柱的母线,则,且,∴四边形是平行四边形,∴,且①又依题知,,,为底面圆的四等分点,∴,且②由①②知四边形为平行四边形,得,且,∴,∵到面的距离为,∴,所以几何体的体积.20、(1)=0.3x-0.4(2)正相关(3)1.7千元【解析】(1)由题意得到n=10,求得,进而求得,写出回归方程;.(2)由判断;(3)将x=7代入回归方程求解.【小问1详解】由题意知n=10,,则,所以所求回归方程为=0.3x-0.4.【小问2详解】因为,所以变量y的值随x的值增加而增加,故x与y之间是正相关.【小问3详解】将x=7代入回归方程可以预测该家庭的月储蓄为=0.3×7-0.4=1.7(千元).21、(1);(2).【解析】(1)根据,并结合等比数列的定义即可求得答案;(2)结合(1),并通过错位相减法即可求得答案.【小问1详解】当时,,当时,,是以2为首项,2为公比的等比数列,.【小问2详解】,…①…②①-②
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房屋市政工程生产安全重大事故隐患判定标准(2024版)宣传海报
- 影像AI模型压缩后的维护策略
- 小儿内科培训课件
- 干细胞与抗VEGF共负载策略
- 莱职院护理学导论课件04护理人际沟通
- 帕金森病运动症状改善
- 巨噬细胞-CAR-T协同:实体瘤清除新策略
- 临床护理教学质量评估总结
- 医疗卫生政策与法规实施效果评估方法探讨与实践
- 互联网医院与健康管理
- 托儿所幼儿园卫生保健工作规范
- JBT 7927-2014 阀门铸钢件外观质量要求
- 胃肠镜健康宣教胃肠镜检查注意事项适应症与禁忌症宣传课件
- 麻醉与复苏技术教案课件
- 专题10 几何图形初步中动角问题压轴题真题分类(原卷版)-2023-2024学年七年级数学上册重难点题型分类高分必刷题(人教版)
- 日立HGP电梯调试
- 家用吸尘器测试标准
- 高低温测试报告表
- 新人教版四年级上册数学同步练习册
- 《两次鸦片战争》同步练习
- 生态保护红线内人类活动生态环境影响评价技术指南
评论
0/150
提交评论