福建省龙岩市非一级达标校2026届高二上数学期末调研模拟试题含解析_第1页
福建省龙岩市非一级达标校2026届高二上数学期末调研模拟试题含解析_第2页
福建省龙岩市非一级达标校2026届高二上数学期末调研模拟试题含解析_第3页
福建省龙岩市非一级达标校2026届高二上数学期末调研模拟试题含解析_第4页
福建省龙岩市非一级达标校2026届高二上数学期末调研模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省龙岩市非一级达标校2026届高二上数学期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.曲线y=lnx在点M处的切线过原点,则该切线的斜率为()A.1 B.eC.-1 D.2.双曲线的离心率为,则其渐近线方程为A. B.C. D.3.在四面体中,空间的一点满足,若共面,则()A. B.C. D.4.某地为响应总书记关于生态文明建设的号召,大力开展“青山绿水”工程,造福于民,拟对该地某湖泊进行治理,在治理前,需测量该湖泊的相关数据.如图所示,测得角∠A=23°,∠C=120°,米,则A,B间的直线距离约为(参考数据)()A.60米 B.120米C.150米 D.300米5.在空间直角坐标系中,已知点,,则线段的中点坐标与向量的模长分别是()A.;5 B.;C.; D.;6.在的展开式中,的系数为()A. B.5C. D.107.已知为坐标原点,向量,点,.若点在直线上,且,则点的坐标为().A. B.C. D.8.若点P是曲线上任意一点,则点P到直线的最小距离为()A.0 B.C. D.9.已知椭圆的长轴长为,短轴长为,则椭圆上任意一点到椭圆中心的距离的取值范围是()A. B.C. D.10.变量,之间有如下对应数据:3456713111087已知变量与呈线性相关关系,且回归方程为,则的值是()A.2.3 B.2.5C.17.1 D.17.311.已知等比数列的公比为,则“是递增数列”的一个充分条件是()A. B.C. D.12.已知,数列,,,与,,,,都是等差数列,则的值是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,,,若,则______.14.设正项等比数列的公比为,前项和为,若,则_______________.15.《周髀算经》是中国最古老的天文学和数学著作,书中提到:从冬至之日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列,若冬至、立春、春分的日影子长的和是37.5尺,芒种的日影子长为4.5尺,则立夏的日影子长为___________尺.16.抛物线的准线方程是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设椭圆的焦距为,原点到经过两点的直线的距离为.(1)求椭圆的离心率;(2)如图所示,是圆的一条直径,若椭圆经过两点,求椭圆的标准方程18.(12分)如图,在四棱锥中,平面平面,,,是边长为的等边三角形,是以为斜边的等腰直角三角形,点为线段的中点.(1)证明:平面;(2)求直线与平面所成角的正弦值.19.(12分)已知命题;命题.(1)若p是q的充分条件,求m的取值范围;(2)当时,已知是假命题,是真命题,求x的取值范围.20.(12分)在①,②,③,三个条件中任选一个,补充在下面的问题中,并解答.设数列是公比大于0的等比数列,其前项和为,数列是等差数列,其前项和为.已知,,,_____________.(1)请写出你选择条件的序号____________;并求数列和的通项公式;(2)求和.21.(12分)已知为各项均为正数的等比数列,且,.(1)求数列的通项公式;(2)令,求数列前n项和.22.(10分)在平面直角坐标系xOy中,椭圆C的参数方程为(θ为参数),直线l的参数方程为(t为参数)(Ⅰ)写出椭圆C的普通方程和直线l的倾斜角;(Ⅱ)若点P(1,2),设直线l与椭圆C相交于A,B两点,求|PA|·|PB|的值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】设出点坐标,结合导数列方程,由此求得切点坐标并求得切线的斜率.【详解】设切点为,,故在点的切线的斜率为,所以,所以切点为,切线的斜率为.故选:D2、A【解析】分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果.详解:因为渐近线方程为,所以渐近线方程为,选A.点睛:已知双曲线方程求渐近线方程:.3、D【解析】根据四点共面的向量表示,可得结果.【详解】由共面知,故选:【点睛】本题主要考查空间中四点共面的向量表示,属基础题.4、C【解析】应用正弦定理有,结合已知条件即可求A,B间的直线距离.【详解】由题设,,在△中,,即,所以米.故选:C5、B【解析】根据给定条件利用中点坐标公式及空间向量模长的坐标表示计算作答.【详解】因点,,所以线段的中点坐标为,.故选:B6、C【解析】首先写出展开式的通项公式,然后结合通项公式确定的系数即可.【详解】展开式的通项公式为:,令可得:,则的系数为:.故选:C.【点睛】二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项7、A【解析】由在直线上,设,再利用向量垂直,可得,进而可求E点坐标.【详解】因为在直线上,故存在实数使得,.若,则,所以,解得,因此点的坐标为.故选:A.【定睛】本题考查了空间向量的共线和数量积运算,考查了运算求解能力和逻辑推理能力,属于一般题目.8、D【解析】由导数的几何意义求得曲线上与直线平行的切线方程的切线坐标,求出切点到直线的距离即为所求最小距离【详解】点是曲线上的任意一点,设,令,解得1或(舍去),,∴曲线上与直线平行的切线的切点为,点到直线的最小距离.故选:D.9、A【解析】不妨设椭圆的焦点在轴上,设点,则,且有,利用二次函数的基本性质可求得的取值范围.【详解】不妨设椭圆的焦点在轴上,则该椭圆的标准方程为,设点,则,且有,所以,.故选:A.10、D【解析】将样本中心点代入回归方程后求解【详解】,,将样本中心点代入回归方程,得故选:D11、D【解析】由等比数列满足递增数列,可进行和两项关系的比较,从而确定和的大小关系.【详解】由等比数列是递增数列,若,则,得;若,则,得;所以等比数列是递增数列,或,;故等比数列是递增数列是递增数列的一个充分条件为,.故选:D.12、A【解析】根据等差数列的通项公式,分别表示出,,整理即可得答案.【详解】数列,,,和,,,,各自都成等差数列,,,,故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据题意,由向量坐标表示,列出方程,求出,,即可得出结果.【详解】因为,,,若,则,解得,所以.故答案为:.【点睛】本题主要考查由向量坐标表示求参数,属于基础题型.14、【解析】由可知公比,所以直接利用等比数列前项和公式化简,即可求出【详解】解:因为,所以,所以,所以,化简得,因为等比数列的各项为正数,所以,所以,故答案为:【点睛】此题考查等比数列前项和公式的应用,考查计算能力,属于基础题15、【解析】利用等差数列的通项公式求出首项和公差,然后求出其中某一项.【详解】解:由题意得从冬至之日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列,设其公差为,解得故立夏的日影子长为尺.故答案为:16、【解析】由题意可得p=4,所以准线方程,填三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据题意得,进而求解离心率即可;(2)根据题意得圆心是线段的中点,且,易知斜率存在,设其直线方程为,再结合韦达定理及弦长公式求解即可.【小问1详解】解:过点的直线方程为,∴原点到直线的距离,由,得,解得离心率.【小问2详解】解:由(1)知,椭圆的方程为.依题意,圆心是线段的中点,且.易知,不与轴垂直,设其直线方程,联立,得.设,则,.由,得,解得.所以.于是.由,得,解得.故椭圆的方程为.18、(1)证明见解析;(2).【解析】(1)取的中点,连接,,证明两两垂直,如图建系,求出的坐标以及平面的一个法向量,证明结合面,即可求证;(2)求出的坐标以及平面的法向量,根据空间向量夹角公式计算即可求解.【小问1详解】如图:取的中点,连接,,因为是边长为等边三角形,是以为斜边的等腰直角三角形,可得,,因为面面,面面,,面,所以平面,因为面,所以,可得两两垂直,分别以所在的直线为轴建立空间直角坐标系,则,,,,,,所以,,,设平面的一个法向量,由,可得,令,则,所以,因为,所以,因为面,所以平面.【小问2详解】,,,设平面的一个法向量,由,令,,,所以,设直线与平面所成角为,则.所以直线与平面所成角的正弦值为.19、(1);(2).【解析】(1)解不等式组即得解;(2)由题得p、q一真一假,分两种情况讨论得解.【小问1详解】解:由题意知p是q的充分条件,即p集合包含于q集合,有;【小问2详解】解:当时,有,由题意知,p、q一真一假,当p真q假时,,当p假q真时,,综上,x的取值范围为20、(1)选①,,;选②,,;选③,,;(2),【解析】(1)选条件①根据等比数列列出方程求出公比得通项公式,再由等差数列列出方程求出首项与公差可得通项公式,选②③与①相同的方法求数列的通项公式;(2)根据等比数列、等差数列的求和公式解计算即可.【小问1详解】选条件①:设等比数列的公比为q,,,解得或,,,.设等差数列的公差为d,,,解得,,.选条件②:设等比数列的公比为q,,,解得或,,,.设等差数列的公差为,,,解得,,选条件③:设等比数列的公比为,,,解得或,,,.设等差数列的公差为,,,解得,【小问2详解】由(1)知,,21、(1);(2).【解析】(1)先通过等比数列的基本量运算求出公比,进而求出通项公式;(2)结合(1)求出,然后根据错位相减法求得答案.【小问1详解】设等比数列公

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论