山东省威海市2026届高二数学第一学期期末质量跟踪监视试题含解析_第1页
山东省威海市2026届高二数学第一学期期末质量跟踪监视试题含解析_第2页
山东省威海市2026届高二数学第一学期期末质量跟踪监视试题含解析_第3页
山东省威海市2026届高二数学第一学期期末质量跟踪监视试题含解析_第4页
山东省威海市2026届高二数学第一学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省威海市2026届高二数学第一学期期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等比数列满足,则q=()A.1 B.-1C.3 D.-32.中国古代有一道数学题:“今有七人差等均钱,甲、乙均七十七文,戊、己、庚均七十五文,问戊、己各若干?”意思是甲、乙、丙、丁、戊、己、庚七个人分钱,所分得的钱数构成等差数列,甲、乙两人共分得77文,戊、己、庚三人共分得75文,则戊、己两人各分得多少文钱?则下列说法正确的是()A.戊分得34文,己分得31文 B.戊分得31文,己分得34文C.戊分得28文,己分得25文 D.戊分得25文,己分得28文3.如图是一水平放置的青花瓷.它的外形为单叶双曲面,可看成是双曲线的一部分绕其虚轴旋转所形成的曲面,且其外形上下对称.花瓶的最小直径为,瓶口直径为,瓶高为,则该双曲线的虚轴长为()A. B.C. D.454.若函数既有极大值又有极小值,则实数a的取值范围是()A. B.C. D.5.如图所示,在平行六面体中,,,,点是的中点,点是上的点,且,则向量可表示为()A. B.C. D.6.命题“,”的否定是A., B.,C., D.,7.如图,过拋物线的焦点的直线与拋物线交于两点,与其准线交于点(点位于之间)且于点且,则等于()A. B.C. D.8.设等比数列的前项和为,若,则的值是()A. B.C. D.49.空间直角坐标系中、、)、,其中,,,,已知平面平面,则平面与平面间的距离为()A. B.C. D.10.已知函数,则()A.函数在上单调递增B.函数上有两个零点C.函数有极大值16D.函数有最小值11.已知数列通项公式,则()A.6 B.13C.21 D.3112.已知直线与椭圆:()相交于,两点,且线段的中点在直线:上,则椭圆的离心率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,且,则_____________14.设数列满足且,则________.数列的通项=________.15.若方程表示焦点在y轴上的双曲线,则实数k的取值范围是______16.下方茎叶图记录了甲、乙两组各5名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为,乙组数据的平均数为,则的值为__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某企业2021年年初有资金5千万元,由于引进了先进生产设备,资金年平均增长率可达到.每年年底扣除下一年的消费基金1.5千万元后,剩余资金投入再生产.设从2021年的年底起,每年年底企业扣除消费基金后的剩余资金依次为,,,…(1)写出,,,并证明数列是等比数列;(2)至少到哪一年的年底,企业的剩余资金会超过21千万元?(lg18.(12分)在中,(1)求的大小;(2)若,.求的面积19.(12分)已知中,分别为角的对边,且(1)求;(2)若为边的中点,,求的面积20.(12分)已知数列是等差数列,(1)求的通项公式;(2)求的最大项21.(12分)已知圆:,点A是圆上一动点,点,点是线段的中点.(1)求点的轨迹方程;(2)直线过点且与点的轨迹交于A,两点,若,求直线的方程.22.(10分)已知函数(1)求的单调区间;(2)若,求的最大值与最小值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据已知条件,利用等比数列的基本量列出方程,即可求得结果.【详解】因为,故可得;解得.故选:C.2、C【解析】设甲、乙、丙、丁、戊、己、庚所分钱数分别为,,,,,,,再根据题意列方程组可解得结果.【详解】依题意,设甲、乙、丙、丁、戊、己、庚所分钱数分别为,,,,,,,则,解得,所以戊分得(文),己分得(文),故选:C.3、C【解析】设双曲线方程为,,由已知可得,并求得双曲线上一点的坐标,把点的坐标代入双曲线方程,求解,即可得到双曲线的虚轴长【详解】设点是双曲线与截面的一个交点,设双曲线的方程为:,花瓶的最小直径,则,由瓶口直径为,瓶高为,可得,故,解得,该双曲线的虚轴长为故选:4、B【解析】函数既有极大值又有极小值转化为导函数在定义域上有两个不同的零点.【详解】因为既有极大值又有极小值,且,所以有两个不等的正实数解,所以,且,解得,且.故选:B.5、D【解析】根据空间向量加法和减法的运算法则,以及向量的数乘运算即可求解.【详解】解:因为在平行六面体中,,,,点是的中点,点是上的点,且,所以,故选:D.6、C【解析】特称命题的否定是全称命题,改量词,且否定结论,故命题的否定是“”.本题选择C选项.7、B【解析】由题可得,然后结合条件可得,即求.【详解】设于点,准线交轴于点G,则,又,∴,又于点且,∴BE∥AD,∴,即,∴,∴等于.故选:B.8、B【解析】根据题意,由等比数列的性质可知成等比数列,从而可得,即可求出的结果.【详解】解:已知等比数列的前项和为,,由等比数列的性质得:成等比数列,且公比不为-1即成等比数列,,,.故选:B.9、A【解析】由已知得,,,设向量与向量、都垂直,由向量垂直的坐标运算可求得,再由平面平行和距离公式计算可得选项.【详解】解:由已知得,,,设向量与向量、都垂直,则,即,取,,又平面平面,则平面与平面间的距离为,故选:A.10、C【解析】对求导,研究的单调性以及极值,再结合选项即可得到答案.【详解】,由,得或,由,得,所以在上递增,在上递减,在上递增,所以极大值为,极小值为,所以有3个零点,且无最小值.故选:C11、C【解析】令即得解.【详解】解:令得.故选:C12、A【解析】将直线代入椭圆方程整理得关于的方程,运用韦达定理,求出中点坐标,再由条件得到,再由,,的关系和离心率公式,即可求出离心率.【详解】解:将直线代入椭圆方程得,,即,设,,,,则,即中点的横坐标是,纵坐标是,由于线段的中点在直线上,则,又,则,,即椭圆的离心率为.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】由共线向量得,解方程即可.【详解】因为,所以,解得.故答案为:214、①.5②.【解析】设,根据题意得到数列是等差数列,求得,得到,利用,结合“累加法”,即可求得.【详解】解:由题意,数列满足,所以当时,,,解得,设,则,且,所以数列是等差数列,公差为,首项为,所以,即,所以,当时,可得,其中也满足,所以数列的通项公式为.故答案为:;.15、【解析】由题可得,即求.【详解】因为方程表示焦点在轴上的双曲线,则,解得.故答案为:.16、9【解析】阅读茎叶图,由甲组数据的中位数为可得,乙组的平均数:,解得:,则:点睛:茎叶图的绘制需注意:(1)“叶”的位置只有一个数字,而“茎”的位置的数字位数一般不需要统一;(2)重复出现的数据要重复记录,不能遗漏,特别是“叶”的位置的数据三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),,,证明见解析(2)至少到2026年的年底,企业的剩余资金会超过21千万元【解析】(1)由题意可知,,,,再结合等比数列的性质,即可求解(2)由(1)知,,则,令,再结合对数函数运算,即可求解【小问1详解】依题意知,,,,,所以,又,所以是首项为3,公比为1.5的等比数列.【小问2详解】由(1)知,,所以令,解得,所以,所以至少到2026年的年底,企业的剩余资金会超过21千万元18、(1)(2)【解析】(1)利用正弦定理将边化角,再根据两角和的正弦公式及诱导公式得到,即可得解;(2)首先由余弦定理求出,即可得到,再根据面积公式计算可得;【小问1详解】解:因为,由正弦定理可得,即,又在中,,所以,,所以;【小问2详解】解:由余弦定理得,即,解得,所以,又,所以;.19、(1);(2)【解析】(1)利用正弦定理化边为角可得,化简可得,结合,即得解;(2)在中,由余弦定理得,可得,利用面积公式即得解【详解】(1)中由正弦定理及条件,可得,∵,,∴,∵,∴,或,又∵,∴,∴,,∴(2)为边的中点,,,得,中,由余弦定理得,∴,∴,∵,∴,20、(1);(2).【解析】(1)利用等差数列的通项公式进行求解即可;(2)运用二次函数的性质进行求解即可.【小问1详解】设等差数列的公差为,所以有,所以;【小问2详解】由(1)可知:,当时,有最大项,最大项为:.21、(1);(2)x=1或y=1.【解析】(1)设线段中点为,点,用x,y表示,代入方程即可;(2)分l斜率存在和不存在进行讨论,根据弦长求出l方程.【小问1详解】设线段中点为,点,,,,,,即点C的轨迹方程为.【小问2详解】直线l的斜率不存在时,l为x=1,代入得,则弦长满足题意;直线l斜率存在时,设直线l斜率为k,其方程为,即,圆的圆心到l的距离,则;综上,l为x=1或y=1.22、(1)单调递增区间是和,单调

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论