版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市建平实验中学2026届高一数学第一学期期末检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.“四边形是菱形”是“四边形是平行四边形”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.若,则的值为()A. B.C.或 D.3.函数y=1g(1-x)+的定义域是()A. B.C. D.4.已知,其中a,b为常数,若,则()A. B.C.10 D.25.某几何体的正视图和侧视图均为如图1所示,则在图2的四个图中可以作为该几何体的俯视图的是A.(1),(3) B.(1),(4)C.(2),(4) D.(1),(2),(3),(4)6.若函数在上单调递增,且,则实数的取值范围是()A. B.C. D.7.已知函数的部分图象如图所示,则函数图象的一个对称中心可能为()A. B.C. D.8.已知向量,满足,,且,则()A. B.2C. D.9.设,且,则等于()A.100 B.C. D.10.给定函数①;②;③;④,其中在区间上单调递减的函数的序号是()A.①② B.②③C.③④ D.①④二、填空题:本大题共6小题,每小题5分,共30分。11.在矩形ABCD中,AB=2,AD=1.设①当时,t=___________;②若,则t的最大值是___________12.已知一组样本数据5、6、a、6、8的极差为5,若,则其方差为________.13.如图,圆锥的底面圆直径AB为2,母线长SA为4,若小虫P从点A开始绕着圆锥表面爬行一圈到SA的中点C,则小虫爬行的最短距离为________14.已知函数满足,若函数与图像的交点为,,,,,则__________15.函数的最大值为,其图象相邻两条对称轴之间的距离为(1)求函数的解析式;(2)设,且,求的值16.函数f(x)=2x+x-7的零点在区间(n,n+1)内,则整数n的值为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,.(1)若在上单调递增,求实数a的取值范围;(2)求关于的不等式的解集.18.已知函数(1)求函数的单调区间;(2)求函数图象的对称中心的坐标和对称轴方程19.已知函数(Ⅰ)当时,求在区间上的值域;(Ⅱ)当时,是否存在这样的实数a,使方程在区间内有且只有一个根?若存在,求出a的取值范围;若不存在,请说明理由20.已知函数,.(1)求的值.(2)设,,,求的值.21.已知函数,.(1)用函数单调性的定义证明:是增函数;(2)若,则当为何值时,取得最小值?并求出其最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由菱形和平行四边形的定义可判断.【详解】解:四边形是菱形则四边形是平行四边形,反之,若四边形是平行四边形则四边形不一定是菱形,所以“四边形是菱形”是“四边形是平行四边形”充分不必要条件.故选:A.2、A【解析】分别令和,根据集合中元素的互异性可确定结果.【详解】若,则,不符合集合元素的互异性;若,则或(舍),此时,符合题意;综上所述:.故选:A.3、B【解析】可看出,要使得原函数有意义,则需满足解出x的范围即可【详解】要使原函数有意义,则:解得-1≤x<1;∴原函数的定义域是[-1,1)故选B【点睛】本题主要考查函数定义域的概念及求法,考查对数函数的定义域和一元二次不等式的解法.意在考查学生对这些知识的理解掌握水平.4、A【解析】计算出,结合可求得的值.【详解】因为,所以,若,则.故选:A5、A【解析】可以是一个正方体上面一个球,也可以是一个圆柱上面一个球6、C【解析】由单调性可直接得到,解不等式即可求得结果.【详解】上单调递增,,,解得:,实数的取值范围为.故选:C7、C【解析】先根据图象求出,得到的解析式,再根据整体代换法求出其对称中心,赋值即可得出答案【详解】由图可知,,,∴,∴当时,,即令,解得当时,可得函数图象的一个对称中心为故选:C.【点睛】本题主要通过已知三角函数的图像求解析式考查三角函数的性质,属于中档题.利用利用图象先求出周期,用周期公式求出,利用特殊点求出,正确求是解题的关键.求解析式时,求参数是确定函数解析式的关键,由特殊点求时,一定要分清特殊点是“五点法”的第几个点,用五点法求值时,往往以寻找“五点法”中的第一个点为突破口,“第一点”(即图象上升时与轴的交点)时;“第二点”(即图象的“峰点”)时;“第三点”(即图象下降时与轴的交点)时;“第四点”(即图象的“谷点”)时;“第五点”时.8、B【解析】根据向量数量积模的公式求,再代入模的公式,求的值.【详解】因为,所以,则,所以,故故选:B9、C【解析】由,得到,再由求解.【详解】因为,所以,则,所以,则,解得,故选:C10、B【解析】根据指对幂函数性质依次判断即可得答案.【详解】解:对于①,在上单调递增;对于②,在上单调递减;对于③,时,在上单调递减;对于④,在上单调递增;故在区间上单调递减的函数的序号是②③故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、①.0②.【解析】利用坐标法可得,结合条件及完全平方数的最值即得.【详解】由题可建立平面直角坐标系,则,∴,∴,∴当时,,因为,要使t最大,可取,即时,t取得最大值是.故答案为:0;.12、2【解析】根据极差的定义可求得a的值,再根据方差公式可求得结果.【详解】因为该组数据的极差为5,,所以,解得.因为,所以该组数据的方差为故答案为:.13、2.【解析】分析:要求小虫爬行的最短距离,需将圆锥的侧面展开,进而根据“两点之间线段最短”得出结果详解:由题意知底面圆的直径AB=2,故底面周长等于2π.设圆锥的侧面展开后的扇形圆心角为n°,根据底面周长等于展开后扇形的弧长得2π=,解得n=90,所以展开图中∠PSC=90°,根据勾股定理求得PC=2,所以小虫爬行的最短距离为2.故答案为2点睛:圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把圆锥的侧面展开成扇形,“化曲面为平面”,用勾股定理解决三、14、4【解析】函数f(x)(x∈R)满足,∴f(x)的图象关于点(1,0)对称,而函数的图象也关于点(1,0)对称,∴函数与图像的交点也关于点(1,0)对称,∴,∴故答案为:4点睛:本题考查函数零点问题.函数零点问题有两种解决方法,一个是利用二分法求解,另一个是化原函数为两个函数,利用两个函数的交点来求解.本题要充分注意到两个函数的共性:关于同一点中心对称.15、(1)(2)【解析】(1)根据函数的最值求出,由相邻两条对称轴之间的距离为,确定函数的周期,进而求出值;(2)由,求出,利用诱导公式结合的范围求出,的值,即可求出结论.【小问1详解】函数的最大值为5,所以A+1=5,即A=4∵函数图象的相邻两条对称轴之间的距离为,∴最小正周期T=π,∴ω=2故函数的解析式为.【小问2详解】,则由,则,所以所以16、2【解析】因为函数f(x)的图象是连续不断的一条曲线,又f(0)=20+0-7=-6<0,f(1)=21+1-7=-4<0,f(2)=22+2-7=-1<0,f(3)=23+3-7=4>0所以f(2)·f(3)<0,故函数f(x)的零点所在的一个区间是(2,3),所以整数n的值为2.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)答案见解析.【解析】(1)根据二次函数图象的性质确定参数a的取值区间;(2)确定方程的根或,讨论两根的大小关系得出不等式的解集.【详解】(1)因为函数的图象为开口向上的抛物线,其对称轴为直线由二次函数图象可知,的单调增区间为因为在上单调递增,所以所以,所以实数的取值区间是;(2)由得:方程的根为或①当时,,不等式的解集是②当时,,不等式的解集是③当时,,不等式的解集是综上,①当时,不等式的解集是②当时,不等式的解集是③当时,不等式的解集是18、(1)增区间为,减区间为(2)对称中心的坐标为;对称轴方程为【解析】(1)将函数转化为,利用正弦函数的单调性求解;(2)利用正弦函数的对称性求解;【小问1详解】解:由.令,解得,令,解得,故函数的增区间为,减区间为;【小问2详解】令,解得,可得函数图象的对称中心的坐标为,令,解得,可得函数图象的对称轴方程为19、(Ⅰ);(Ⅱ)存在,.【解析】(Ⅰ)先把代入解析式,再求对称轴,进而得到函数的单调性,即可求出值域;(Ⅱ)函数在区间内有且只有一个零点,转化为函数和的图象在内有唯一交点,根据中是否为零,分类讨论,结合函数的性质,即可求解.【详解】(Ⅰ)当时,,对称轴为:,所以函数在区间单调递减,在区间单调递增;则,所以在区间上的值域为;(Ⅱ)由,令,可得,即,令,,,函数在区间内有且只有一个零点,等价于两个函数与的图象在内有唯一交点;①当时,在上递减,在上递增,而,所以函数与的图象在内有唯一交点.②当时,图象开口向下,对称轴为,在上递减,在上递增,与的图象在内有唯一交点,当且仅当,即,解得,所以.③当时,图象开口向上,对称轴为,在上递减,在上递增,与的图象在内有唯一交点,,即,解得,所以.综上,存在实数,使函数于在区间内有且只有一个点.【点睛】关键点睛:本题主要考查了求一元二次函数的值域问题,以及函数与方程的综合应用,其中解答中把函数的零点问题转化为两个函数图象的交点个数问题,结合函数的性质求解是解答的关键,着重考查转化思想,以及推理与运算能力.20、(1);(2).【解析】(1)代入可求得其值;(2)由已知求得,,再由同角三角函数的关系可求得,,运用余弦的和角公式可求得答案.【详解】解:(1).(2),∴,∵,∴,∵,∴,,∵
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建材品类采购合同范本
- 学生书包采购合同范本
- 学校教室隔墙板协议书
- 小推拿店员工合同范本
- 小巷拆除工程合同范本
- 小学餐厅用工合同范本
- 审查服务合同三方协议
- 太原新房购房合同范本
- 现浇预应力连续箱梁专项施工方案试卷教案
- 历高考英语宾语英语宾语从句上课教案
- 餐饮供货合同餐饮供货合同
- 《锐角三角函数》复习(公开课)课件
- 高三英语阅读理解:文章标题型
- 《乡土中国》 《无讼》课件
- GB/T 9870.1-2006硫化橡胶或热塑性橡胶动态性能的测定第1部分:通则
- GB/T 4675.1-1984焊接性试验斜Y型坡口焊接裂纹试验方法
- GB/T 1687.3-2016硫化橡胶在屈挠试验中温升和耐疲劳性能的测定第3部分:压缩屈挠试验(恒应变型)
- FZ/T 73009-2021山羊绒针织品
- 资产评估收费管理办法(2023)2914
- 消防安全应急预案及架构图
- 重大经济建设项目的税收管理与服务
评论
0/150
提交评论