包头市重点中学2026届高二数学第一学期期末考试试题含解析_第1页
包头市重点中学2026届高二数学第一学期期末考试试题含解析_第2页
包头市重点中学2026届高二数学第一学期期末考试试题含解析_第3页
包头市重点中学2026届高二数学第一学期期末考试试题含解析_第4页
包头市重点中学2026届高二数学第一学期期末考试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

包头市重点中学2026届高二数学第一学期期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是椭圆右焦点,点在椭圆上,线段与圆相切于点,且,则椭圆的离心率等于()A. B.C. D.2.根据如下样本数据,得到回归直线方程,则x345678y4.02.5-0.50.5-2.0-3.0A. B.C. D.3.在正方体ABCD﹣A1B1C1D1中,E为棱A1B1上一点,且AB=2,若二面角B1﹣BC1﹣E为45°,则四面体BB1C1E的外接球的表面积为()A.π B.12πC.9π D.10π4.已知为坐标原点,向量,点,.若点在直线上,且,则点的坐标为().A. B.C. D.5.不等式的解集为()A.或 B.C. D.6.已知圆:,圆:,则两圆的位置关系为()A.外离 B.外切C.相交 D.内切7.已知等比数列满足,则q=()A.1 B.-1C.3 D.-38.已知椭圆的长轴长,短轴长,焦距长成等比数列,则椭圆离心率为()A. B.C. D.9.在四面体中,点G是的重心,设,,,则()A. B.C. D.10.若空间中n个不同的点两两距离都相等,则正整数n的取值A.至多等于3 B.至多等于4C.等于5 D.大于511.正三棱柱各棱长均为为棱的中点,则点到平面的距离为()A. B.C. D.112.命题:“x>0,都有x2-x+1≤0”的否定是()A.x>0,使得x2-x+1≤0 B.x>0,使得x2-x+1>0C.x>0,都有x2-x+1>0 D.x≤0,都有x2-x+1>0二、填空题:本题共4小题,每小题5分,共20分。13.不大于100的正整数中,被3除余1的所有数的和是___________14.点在以,为焦点的椭圆上运动,则的重心的轨迹方程是___________.15.已知等差数列的公差不为零,若,,成等比数列,则______.16.双曲线的离心率为____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,是底面边长为1的正三棱锥,分别为棱上的点,截面底面,且棱台与棱锥的棱长和相等.(棱长和是指多面体中所有棱的长度之和)(1)求证:为正四面体;(2)若,求二面角的大小;(3)设棱台的体积为,是否存在体积为且各棱长均相等的直四棱柱,使得它与棱台有相同的棱长和?若存在,请具体构造出这样的一个直四棱柱,并给出证明;若不存在,请说明理由.18.(12分)保护生态环境,提倡环保出行,节约资源和保护环境,某地区从2016年开始大力提倡新能源汽车,每年抽样1000汽车调查,得到新能源汽车y辆与年份代码x年的数据如下表:年份20162017201820192020年份代码第x年12345新能源汽车y辆305070100110(1)建立y关于x的线性回归方程;(2)假设该地区2022年共有30万辆汽车,用样本估计总体来预测该地区2022年有多少新能源汽车参考公式:回归方程斜率和截距的最小二乘估计公式分别为,19.(12分)若是双曲线的两个焦点.(1)若双曲线上一点到它的一个焦点的距离等于10,求点到另一个焦点距离;(2)如图若是双曲线左支上一点,且,求的面积.20.(12分)如图所示,在直三棱柱中,是等腰直角三角形,(1)证明:;(2)若点E是棱的中点,求平面与平面所成锐二面角的余弦值21.(12分)已知抛物线:的焦点为,点在上,点在的内侧,且的最小值为.(1)求的方程;(2)为坐标原点,点A在y轴正半轴上,点B,C为E上两个不同的点,其中B点在第四象限,且AB,互相垂直平分,求四边形AOBC的面积.22.(10分)已知椭圆C:的离心率为,左、右焦点分别为、,椭圆上的点到左焦点最近的距离为.(1)求椭圆C的方程;(2)若经过点的直线与椭圆C交于M,N两点,当的面积取得最大值时,求直线的方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】结合椭圆的定义、勾股定理列方程,化简求得,由此求得离心率.【详解】圆的圆心为,半径为.设左焦点为,连接,由于,所以,所以,所以,由于,所以,所以,,.故选:A2、B【解析】作出散点图,由散点图得出回归直线中的的符号【详解】作出散点图如图所示.由图可知,回归直线=x+的斜率<0,当x=0时,=>0.故选B【点睛】本题考查了散点图的概念,拟合线性回归直线第一步画散点图,再由数据计算的值3、D【解析】连接交于,可得,利用线面垂直的判定定理可得:平面,于是,可得而为二面角的平面角,再求出四面体的外接球半径,进而利用球的表面积计算公式得出结论【详解】连接交于,则,易知,则平面,所以,从而为二面角的平面角,则.因为,所以,所以四面体的外接球半径故四面体BB1C1E的外接球的表面积为故选:D【点睛】本题考查了正方体的性质、线面垂直的判定与性质定理、二面角的平面角、球的表面积计算公式,考查了推理能力与计算能力,属于中档题4、A【解析】由在直线上,设,再利用向量垂直,可得,进而可求E点坐标.【详解】因为在直线上,故存在实数使得,.若,则,所以,解得,因此点的坐标为.故选:A.【定睛】本题考查了空间向量的共线和数量积运算,考查了运算求解能力和逻辑推理能力,属于一般题目.5、A【解析】根据一元二次不等式的解法可得答案.【详解】由不等式可得或不等式的解集为或故选:A6、C【解析】求出两圆的圆心和半径,根据圆心距与半径和与差的关系,判断圆与圆的位置关系【详解】圆:的圆心为,半径,圆:,即,圆心,半径,两圆的圆心距,显然,即,所以圆与圆相交.故选:C7、C【解析】根据已知条件,利用等比数列的基本量列出方程,即可求得结果.【详解】因为,故可得;解得.故选:C.8、A【解析】由题意,,结合,求解即可【详解】∵椭圆的长轴长,短轴长,焦距长成等比数列∴∴又∵∴∴,即∴e=又在椭圆e>0∴e=故选:A9、B【解析】结合重心的知识以及空间向量运算求得正确答案.【详解】设是中点,.故选:B10、B【解析】先考虑平面上的情况:只有三个点的情况成立;再考虑空间里,只有四个点的情况成立,注意运用外接球和三角形三边的关系,即可判断解:考虑平面上,3个点两两距离相等,构成等边三角形,成立;4个点两两距离相等,由三角形的两边之和大于第三边,则不成立;n大于4,也不成立;空间中,4个点两两距离相等,构成一个正四面体,成立;若n>4,由于任三点不共线,当n=5时,考虑四个点构成的正四面体,第五个点,与它们距离相等,必为正四面体的外接球的球心,由三角形的两边之和大于三边,故不成立;同理n>5,不成立故选B点评:本题考查空间几何体的特征,主要考查空间两点的距离相等的情况,注意结合外接球和三角形的两边与第三边的关系,属于中档题和易错题11、C【解析】建立空间直角坐标系,利用点面距公式求得正确答案.【详解】设分别是的中点,根据正三棱柱的性质可知两两垂直,以为原点建立如图所示空间直角坐标系,,,.设平面的法向量为,则,故可设,所以点到平面的距离为.故选:C12、B【解析】全称命题的否定是特称命题,把任意改为存在,把结论否定.【详解】“x>0,都有x2-x+1≤0”的否定是“x>0,使得x2-x+1>0”.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、1717【解析】利用等差数列的前项和公式可求所有数的和.【详解】100以内的正整数中,被3除余1由小到大构成等差数列,其首项为1,公差为3,共有项,它们的和为,故答案为:.14、【解析】设出点和三角形的重心,利用重心坐标公式得到点和三角形的重心坐标的关系,,代入椭圆方程即可求得轨迹方程,再利用,,三点不共线得到.【详解】设,,由,得,即,,因为为的重心,所以,,即,,代入,得,即,因为,,三点不共线,所以,则的重心的轨迹方程是.故答案:.15、0【解析】设等差数列的公差为,,根据,,成等比数列,得到,再根据等差数列的通项公式可得结果.【详解】设等差数列的公差为,,因为,,成等比数列,所以,所以,整理得,因为,所以,所以.故答案为:0.【点睛】本题考查了等比中项,考查了等差数列通项公式基本量运算,属于基础题.16、【解析】由题意得:考点:双曲线离心率三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2);(3)存在,构造棱长均为,底面相邻两边的夹角为的直四棱柱即满足条件.【解析】(1)由棱台、棱锥的棱长和相等可得,再由面面平行有,结合正四面体的结构特征即可证结论.(2)取BC的中点M,连接PM、DM、AM,由线面垂直的判定可证平面PAM,即是二面角的平面角,进而求其大小.(3)设直四棱柱的棱长均为,底面相邻两边的夹角为,结合已知条件用表示出即可确定直四棱柱.【小问1详解】由棱台与棱锥的棱长和相等,∴,故.又截面底面ABC,则,,∴,从而,故为正四面体.【小问2详解】取BC的中点M,连接PM、DM、AM,由,,得:平面PAM,而平面PAM,故,从而是二面角的平面角.由(1)知,三棱锥的各棱长均为1,所以.由D是PA的中点,得.在Rt△ADM中,,故二面角的大小为.【小问3详解】存在满足条件的直四棱柱.棱台的棱长和为定值6,体积为V.设直四棱柱的棱长均为,底面相邻两边的夹角为,则该四棱柱的棱长和为6,体积为.因为正四面体的体积是,所以,,从而,故构造棱长均为,底面相邻两边的夹角为的直四棱柱,即满足条件.18、(1)(2)46800【解析】(1)第一步分别算第x,y的平均值,第二步利用,即可得到方程.(2)由第一问的结果,带入方程即可算出预估的结果.【小问1详解】,,,因为,所以,所以【小问2详解】预测该地区2022年抽样1000汽车调查中新能源汽车数,当时,,该地区2022年共有30万辆汽车,所以新能源汽车.19、(1)(2)【解析】(1)利用双曲线定义,根据点到一个焦点的距离求点到另一个焦点的距离即可;(2)先根据定义得到,两边平方求得,即证,,再计算直角三角形面积即可.【小问1详解】是双曲线的两个焦点,则,点M到它的一个焦点的距离等于10,设点到另一个焦点的距离为,则由双曲线定义可知,,解得或(舍去)即点到另一个焦点的距离为;【小问2详解】P是双曲线左支上的点,则,则,而,所以,即,所以为直角三角形,,所以.20、(1)证明见解析(2)【解析】(1)根据线面垂直的判定定理证出平面,即可证得;(2)以A为原点,分别以所在直线为x轴,y轴,z轴建立空间直角坐标系,根据二面角的向量公式即可求出【小问1详解】如图,连接,由已知可得四边形是正方形,所以在直三棱柱中,平面平面,交线为,在中,可知,所以平面,于因为,所以平面,而平面,所以【小问2详解】如图所示,以A为原点,分别以所在直线为x轴,y轴,z轴建立空间直角坐标系,则,于是设平面的法向量为,则,可取而平面的一个法向量为,所以故平面与平面所成锐二面角的余弦值为21、(1)(2)【解析】(1)根据题意,结合抛物线定义,可求得,即得抛物线方程;(2)由题意推出四边形AOBC是菱形.,设,根据抛物线的对称性,可表示出B,C的坐标,从而利用向量的坐标运算,求得所设参数值,进而求得答案.【小问1详解】的准线为:,作于R,根据抛物线的定义有,所以,因为在的内侧,所以当P,Q,R三点共线时,取得最小值,此时,解得,所以的方程为.小问2详解】因为AB,OC互相垂直平分,所以四边形AOBC是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论