版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届江苏省涟水郑梁梅高级中学高二数学第一学期期末教学质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.焦点坐标为的抛物线的标准方程是()A. B.C. D.2.动点P,Q分别在抛物线和圆上,则的最小值为()A. B.C. D.3.已知直线,,若,则实数的值是()A.0 B.2或-1C.0或-3 D.-34.若函数,满足且,则()A.1 B.2C.3 D.45.已知三个观测点,在的正北方向,相距,在的正东方向,相距.在某次爆炸点定位测试中,两个观测点同时听到爆炸声,观测点晚听到,已知声速为,则爆炸点与观测点的距离是()A. B.C. D.6.若离散型随机变量的所有可能取值为1,2,3,…,n,且取每一个值的概率相同,若,则n的值为()A.4 B.6C.9 D.107.已知双曲线C的离心率为,,是C的两个焦点,P为C上一点,,若△的面积为,则双曲线C的实轴长为()A.1 B.2C.4 D.68.某救援队有5名队员,其中有1名队长,1名副队长,在一次救援中需随机分成两个行动小组,其中一组2名队员,另一组3名队员,则正、副队长不在同一组的概率为()A. B.C. D.9.已知数列中,,则()A. B.C. D.10.过点作圆的切线,则切线的方程为()A. B.C.或 D.或11.“,”的否定是A., B.,C., D.,12.已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=()A.2 B.3C.6 D.9二、填空题:本题共4小题,每小题5分,共20分。13.已知p:“”为真命题,则实数a的取值范围是_________.14.圆的圆心坐标为___________;半径为___________.15.已知等差数列公差不为0,且,,等比数列,则_________.16.写出一个离心率且焦点在轴上的双曲线的标准方程________,并写出该双曲线的渐近线方程________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆,直线(1)求证:对,直线l与圆C总有两个不同交点;(2)当时,求直线l被圆C截得的弦长18.(12分)某校从高一年级学生中随机抽取40名中学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:,,…,所得到如图所示的频率分布直图(1)求图中实数的值;(2)若该校高一年级共有640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;(3)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取两名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.19.(12分)在中,角的对边分别为,且.(1)求;(2)若,的面积为,求.20.(12分)已知:方程表示焦点在轴上的椭圆,:方程表示焦点在轴上的双曲线,其中.(1)若“”为真命题,求的取值范围:(2)若“”为假命题,“”为真命题,求的取值范围.21.(12分)椭圆的左、右焦点分别为,短轴的一个端点到的距离为,且椭圆过点过且不与两坐标轴平行的直线交椭圆于两点,点与点关于轴对称.(1)求椭圆的方程(2)当直线的斜率为1时,求的面积;(3)若点,求证:三点共线.22.(10分)在平面直角坐标系xOy中,椭圆C的左,右焦点分别为F1(﹣,0),F2(,0),且椭圆C过点(﹣).(1)求椭圆C的标准方程;(2)设过(0,﹣2)的直线l与椭圆C交于M,N两点,O为坐标原点,若,求直线l的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】依次确定选项中各个抛物线的焦点坐标即可.【详解】对于A,的焦点坐标为,A错误;对于B,的焦点坐标为,B错误;对于C,焦点坐标为,C错误;对于D,的焦点坐标为,D正确.故选:D.2、B【解析】设,根据两点间距离公式,先求得P到圆心的最小距离,根据圆的几何性质,即可得答案.【详解】设,圆化简为,即圆心为(0,4),半径为,所以点P到圆心的距离,令,则,令,,为开口向上,对称轴为的抛物线,所以的最小值为,所以,所以的最小值为.故选:B3、C【解析】由,结合两直线一般式有列方程求解即可.【详解】由知:,解得:或故选:C.4、C【解析】先取,得与之间的关系,然后根据导数的运算直接求导,代值可得.【详解】取,则有,即,又因为所以,所以,所以.故选:C5、D【解析】根据题意作出示意图,然后结合余弦定理解三角形即可求出结果.【详解】设爆炸点为,由于两个观测点同时听到爆炸声,则点位于的垂直平分线上,又在的正东方向且观测点晚听到,则点位于的左侧,,,,设,则,解得,则爆炸点与观测点的距离为,故选:D.6、D【解析】根据分布列即可求出【详解】因为,所以故选:D7、C【解析】由已知条件可得,,,再由余弦定理得,进而求其正弦值,最后利用三角形面积公式列方程求参数a,即可知双曲线C的实轴长.【详解】由题意知,点P在右支上,则,又,∴,,又,∴,则在△中,,∴,故,解得,∴实轴长为,故选:C.8、C【解析】求出基本事件总数与正、副队长不在同一组的基本事件个数,即可求出答案.【详解】基本事件总数为正、副队长不在同一组的基本事件个数为故正、副队长不在同一组的概率为.故选:C.9、D【解析】由数列的递推公式依次去求,直到求出即可.【详解】由,可得,,,故选:D.10、C【解析】设切线的方程为,然后利用圆心到直线的距离等于半径建立方程求解即可.【详解】圆的圆心为原点,半径为1,当切线的斜率不存在时,即直线的方程为,不与圆相切,当切线的斜率存在时,设切线的方程为,即所以,解得或所以切线的方程为或故选:C11、D【解析】通过命题的否定的形式进行判断【详解】因为全称命题的否定是特称命题,故“,”的否定是“,”.故选D.【点睛】本题考查全称命题的否定,属基础题.12、C【解析】利用抛物线的定义建立方程即可得到答案.【详解】设抛物线的焦点为F,由抛物线的定义知,即,解得.故选:C.【点晴】本题主要考查利用抛物线的定义计算焦半径,考查学生转化与化归思想,是一道容易题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据条件将问题转化不等式在上有解,则,由此求解出的取值范围.【详解】因为“”为真命题,所以不等式在上有解,所以,所以,故答案为:.14、①.②.【解析】配方后可得圆心坐标和半径【详解】将圆的一般方程化为圆标准方程是,圆心坐标为,半径为故答案为:;15、【解析】设等差数列的公差为,由,,等比数列,可得,则的值可求【详解】解:设等差数列的公差为,,,等比数列,,则,得,故答案为:16、①.(答案不唯一)②.(答案不唯一)【解析】令双曲线为,根据离心率可得,结合双曲线参数关系写出一个符合要求的双曲线方程,进而写出对应的渐近线方程.【详解】由题设,可令双曲线为且,∴,则,故为其中一个标准方程,此时渐近线方程为.故答案为:,(答案不唯一).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)由直线过定点,只需判断定点在圆内部,即可证结论.(2)由点线距离公式求弦心距,再利用半径、弦心距、弦长的几何关系求弦长即可.【小问1详解】直线恒过定点,又,所以点在圆的内部,所以直线与圆总有两个不同的交点,得证.【小问2详解】由题设,,又的圆心为,半径为,所以到直线的距离,所以所求弦长为18、(1)a=0.03;(2)544人;(3).【解析】(1)根据图中所有小矩形的面积之和等于1求解.
(2)根据频率分布直方图,得到成绩不低于60分的频率,再根据该校高一年级共有学生640人求解.
(3)由频率分布直方图得到成绩在[40,50)和[90,100]分数段内的人数,先列举出从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取两名学生的基本事件总数,再得到两名学生的数学成绩之差的绝对值不大于10”的基本事件数,代入古典概型概率求解.【详解】(1)∵图中所有小矩形的面积之和等于1,∴10×(0.005+0.01+0.02+a+0.025+0.01)=1,解得a=0.03.
(2)根据频率分布直方图,成绩不低于60分的频率为1−10×(0.005+0.01)=0.85,
∵该校高一年级共有学生640人,
∴由样本估计总体的思想,可估计该校高一年级数学成绩不低于60分的人数约为640×0.85=544人.
(3)成绩在[40,50)分数段内的人数为40×0.05=2人,分别记为A,B,
成绩在[90,100]分数段内的人数为40×0.1=4人,分别记为C,D,E,F.
若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取两名学生,
则所有的基本事件有:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),
(C,F),(D,E),(D,F),(E,F)共15种.
如果两名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,
那么这两名学生的数学成绩之差的绝对值一定不大于10.
如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,
那么这两名学生数学成绩之差的绝对值一定大于10.
记“这两名学生的数学成绩之差的绝对值不大于10”为事件M,
则事件M包含的基本事件有:(A,B),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F)共7种.
∴所求概率为P(M)=.【点睛】本题主要考查频率分布直方图的应用以及古典概型概率的求法,还考查了运算求解的能力,属于中档题.19、(1);(2).【解析】(1)由正弦定理得到,两边消去公因式得到,化一即可求得角A;(2)因为,所以,再结合余弦定理得到结果.【详解】(1)由,得,因为,所以,整理得:,因,所以.(2)因为,所以,因为及,所以,即.【点睛】本题主要考查正弦定理及余弦定理的应用以及三角形面积公式,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.20、(1)或(2)【解析】(1)先假设命题为真命题,求出的取值范围,为真命题,取补集即可(2)假设命题为真命题,求出的取值范围,根据题意,则命题假设和命题一真一假,分类讨论求的取值范围【小问1详解】解:若为真命题,则,解得,若“”为真命题,则为假命题,或;【小问2详解】若为真命题,则解得,若“”为假命题,则“”为真命题,则与一真一假,①若真假,则解得,②若真假,则解得,综上所述,,即的取值范围为.21、(1);(2);(3)证明见解析.【解析】(1)根据已知求出即得椭圆的方程;(2)联立直线和椭圆的方程求出弦长和三角形的高即得解;(3)联立直线和椭圆的方程,得到韦达定理,再利用平面向量证明.【小问1详解】解:由题得,所以椭圆方程为,因为椭圆过点所以,所以所以椭圆的方程为.【小问2详解】解:由题得,所以直线的方程为即,联立直线和椭圆方程得,所以,点到直线的距离为.所以的面积为.【小问3详解】解:设直线的方程为,联立直线和椭圆的方程得,设,所以,由题得,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年赣州市国投集团定向招聘残疾人备考题库含答案详解
- 2026年新县消防救援大队政府专职消防员招聘备考题库及答案详解一套
- 2026年苏州市吴江东方国有资本投资经营有限公司下属子公司招聘工作人员备考题库及答案详解一套
- 防城港市港口区人民检察院2025年公开招聘检务辅助人员备考题库及一套答案详解
- 2026年重庆大学微电子与通信工程学院科研团队劳务派遣工作人员招聘备考题库及答案详解参考
- 2026年长安镇厦岗小学(公立)招聘备考题库及答案详解1套
- 2026年兰溪市中医院第一批面向高校公开招聘医学类应届毕业生的备考题库及答案详解(易错题)
- 2026年江阴市云亭中学教师招聘备考题库及完整答案详解
- 2025年“才聚齐鲁成就未来”山东土地东方发展集团有限公司招聘备考题库及答案详解参考
- 国家无线电监测中心京外监测站2026年校园招聘考试备考题库(一)及一套参考答案详解
- 精神科护理业务学习内容
- 颈腰椎病的诊断与康复
- 工程机械检测培训课件
- 高分子材料与工程专业职业生涯规划书3800字数
- 火锅店管理运营手册
- 不带薪实习合同范例
- 山东济南历年中考语文现代文之记叙文阅读14篇(截至2024年)
- 安全生产新年第一课
- 2023-2024学年广东省广州市白云区六年级(上)期末数学试卷
- 产房护士长工作总结
- 生命伦理学:生命医学科技与伦理智慧树知到期末考试答案章节答案2024年山东大学
评论
0/150
提交评论