版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
信阳市重点中学2026届高一上数学期末教学质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.黄金分割比例广泛存在于许多艺术作品中.在三角形中,底与腰之比为黄金分割比的三角形被称作黄金三角形,被认为是最美的三角形,它是两底角为72°的等腰三角形.达芬奇的名作《蒙娜丽莎》中,在整个画面里形成了一个黄金三角形.如图,在黄金三角形中,,根据这些信息,可得()A. B.C. D.2.已知角,且,则()A. B.C. D.3.已知幂函数的图象过(4,2)点,则A. B.C. D.4.设是两个单位向量,且,那么它们的夹角等于()A. B.C. D.5.已知向量,则锐角等于A.30° B.45°C.60° D.75°6.已知平面直角坐标系中,的顶点坐标分别为、、,为所在平面内的一点,且满足,则点的坐标为()A. B.C. D.7.设,则a,b,c大小关系为()A. B.C. D.8.两圆和的位置关系是A.内切 B.外离C.外切 D.相交9.已知幂函数的图象过点,则的定义域为()A.R B.C. D.10.若是第二象限角,是其终边上的一点,且,则()A. B.C. D.或二、填空题:本大题共6小题,每小题5分,共30分。11.若不等式的解集为,则______,______12.若a∈{1,a2﹣2a+2},则实数a的值为___________.13.关于函数f(x)=有如下四个命题:①f(x)的图象关于y轴对称②f(x)的图象关于原点对称③f(x)的图象关于直线x=对称④f(x)的最小值为2其中所有真命题的序号是__________14.若幂函数的图象过点,则______.15.已知直三棱柱的6个顶点都在球O的球面上,若,则球O的半径为________16.函数满足,且在区间上,则的值为____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,其中(1)判断函数的奇偶性并证明;(2)求函数的值域18.已知全集,集合,.(1)当时,求;(2)命题p:,命题q:,若q是p的必要条件,求实数a的取值范围.19.已知函数,.(1)若不等式的解集为,求不等式的解集;(2)若函数在区间上有两个不同的零点,求实数的取值范围20.已知的图象上相邻两对称轴的距离为.(1)若,求的递增区间;(2)若时,若的最大值与最小值之和为5,求的值.21.空气质量指数是定量描述空气质量状况的指数,空气质量指数的值越高,就代表空气污染越严重,其分级如下表:空气质量指数空气质量类别优良轻度污染中度污染重度污染严重污染现分别从甲、乙两个城市月份监测的空气质量指数的数据中随机抽取天的数据,记录如下:甲乙(1)估计甲城市月份某一天空气质量类别为良的概率;(2)分别从甲、乙两个城市的统计数据中任取一个,求这两个数据对应的空气质量类别都为轻度污染的概率;(3)记甲城市这天空气质量指数的方差为.从甲城市月份空气质量指数的数据中再随机抽取一个记为,若,与原有的天的数据构成新样本的方差记为;若,与原有的天的数据构成新样本的方差记为,试比较、、的大小.(结论不要求证明)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由题意,结合二倍角余弦公式、平方关系求得,再根据诱导公式即可求.【详解】由题设,可得,,所以,又,所以.故选:B2、A【解析】依题意可得,再根据,即可得到,从而求出,再根据同角三角函数的基本关系求出,最后利用诱导公式计算可得;【详解】解:因为,所以,因为,所以且,所以,即,所以,所以,所以;故选:A3、A【解析】详解】由题意可设,又函数图象过定点(4,2),,,从而可知,则.故选A4、C【解析】由条件两边平方可得,代入夹角公式即可得到结果.【详解】由,可得:,又是两个单位向量,∴∴∴它们的夹角等于故选C【点睛】本题考查单位向量的概念,向量数量积的运算及其计算公式,向量夹角余弦的计算公式,以及已知三角函数求角,清楚向量夹角的范围5、B【解析】因为向量共线,则有,得,锐角等于45°,选B6、A【解析】设点的坐标为,根据向量的坐标运算得出关于、的方程组,解出这两个未知数,可得出点的坐标.【详解】设点的坐标为,,,,,即,解得,因此,点的坐标为.故选:A.【点睛】本题考查向量的坐标运算,考查计算能力,属于基础题.7、C【解析】利用有理指数幂和幂函数的单调性分别求得,,的范围即可得答案【详解】,,,又在上单调递增,,,故选:C8、D【解析】根据两圆方程求解出圆心和半径,从而得到圆心距;根据得到两圆相交.【详解】由题意可得两圆方程为:和则两圆圆心分别为:和;半径分别为:和则圆心距:则两圆相交本题正确选项:【点睛】本题考查圆与圆的位置关系,关键是判断出圆心距和两圆半径之间的关系,属于基础题.9、C【解析】设,点代入即可求得幂函数解析式,进而可求得定义域.【详解】设,因为的图象过点,所以,解得,则,故的定义域为故选:C10、C【解析】根据余弦函数的定义有,结合是第二象限角求解即可.【详解】由题设,,整理得,又是第二象限角,所以.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、①.②.【解析】由题设知:是的根,应用根与系数关系即可求参数值.【详解】由题设,是的根,∴,即,.故答案为:,.12、2【解析】利用集合的互异性,分类讨论即可求解【详解】因为a∈{1,a2﹣2a+2},则:a=1或a=a2﹣2a+2,当a=1时:a2﹣2a+2=1,与集合元素的互异性矛盾,舍去;当a≠1时:a=a2﹣2a+2,解得:a=1(舍去)或a=2;故答案为:2【点睛】本题考查集合的互异性问题,主要考查学生的分类讨论思想,属于基础题13、②③【解析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取可判断命题④的正误.综合可得出结论.【详解】对于命题①,,,则,所以,函数的图象不关于轴对称,命题①错误;对于命题②,函数的定义域为,定义域关于原点对称,,所以,函数的图象关于原点对称,命题②正确;对于命题③,,,则,所以,函数的图象关于直线对称,命题③正确;对于命题④,当时,,则,命题④错误.故答案为:②③.【点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.第ⅠⅠ卷14、【解析】设,将点代入函数的解析式,求出实数的值,即可求出的值.【详解】设,则,得,,因此,.故答案为.【点睛】本题考查幂函数值的计算,解题的关键就是求出幂函数的解析式,考查运算求解能力,属于基础题.15、【解析】根据直角三角形的外接圆的直径是直角三角形的斜边,结合球的对称性、勾股定理、直三棱柱的几何性质进行求解即可.【详解】因为,所以三角形是以为斜边的直角三角形,因此三角形的外接圆的直径为,圆心为.因为,所以,在直三棱柱中,侧面是矩形且它的中心即为球心O,球的直径是的长,则,所以球的半径为故答案为:【点睛】本题考查了直三棱柱外接球问题,考查了直观想象能力和数学运算能力.16、【解析】分析:先根据函数周期将自变量转化到已知区间,代入对应函数解析式求值,再代入对应函数解析式求结果.详解:由得函数的周期为4,所以因此点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)是偶函数,证明见解析(2)【解析】(1)由对数的运算得出,再由定义证明即可;(2)根据基本不等式结合对数函数的单调性得出函数的值域【小问1详解】是偶函数,的定义域为R∵,∴,∴是偶函数【小问2详解】∵,当且仅当时取等号,∴∴的值域为18、(1)(2)【解析】(1)先解分式不等式和二次不等式得集合,再求补集和交集即可;(2)先判断得,再根据必要条件得到集合的包含关系,列不等式求解即可.【小问1详解】∵时,,,全集,∴或.∴【小问2详解】∵命题:,命题:,是必要条件,∴∵,∴,∵,,∴,解得或,故实数的取值范围19、(1);(2)【解析】(1)根据二次函数与对应一元二次不等式的关系,求出a的值,再解不等式即可;(2)根据二次函数的图象与性质,列出不等式组,求出解集即可.【详解】(1)因为不等式的解集为,则方程的两个根为1和2,由根与系数的关系可得,,所以.由,得,即,解得或,所以不等式的解集为;(2)由题知函数,且在区间上有两个不同的零点,则,即,解得,所以实数的取值范围是【点睛】本题考查了二次函数的图象与性质的应用问题,也考查了不等式(组)的解法与应用问题,综合性较强,属中档题.20、(1)增区间是[kπ-,kπ+],k∈Z(2)【解析】首先根据已知条件,求出周期,进而求出的值,确定出函数解析式,由正弦函数的递增区间,,即可求出的递增区间由确定出的函数解析式,根据的范围求出这个角的范围,利用正弦函数的图象与性质即可求出函数的最大值,即可得到的值解析:已知由,则T=π=,∴w=2∴(1)令-+2kπ≤2x+≤+2kπ则-+kπ≤x≤+kπ故f(x)的增区间是[kπ-,kπ+],k∈Z(2)当x∈[0,]时,≤2x+≤∴sin(2x+)∈[-,1]∴∴点睛:这是一道求三角函数递增区间以及利用函数在某区间的最大值求得参数的题目,主要考查了两角和的正弦函数公式,正弦函数的单调性,以及正弦函数的定义域和值域,解题的关键是熟练掌握正弦函数的性质,属于中档题21、(1);(2);(3)【解析】(1)甲城市这天内空气质量类别为良有天,利用频率估计概率的思想可求得结果;(2)列举出所有的基本事件,并利用古典概型的概率公式可求得结果;(3)根据题意可得出、、的大小关系.【详解】(1)甲城市这
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年征兵心理抗压能力测试题及核心答案
- 2026年黑龙江农业职业技术学院单招职业技能考试备考试题带答案解析
- 2026年成都农业科技职业学院高职单招职业适应性考试模拟试题带答案解析
- 2026年黑龙江农业工程职业学院单招职业技能笔试模拟试题带答案解析
- 高层住宅静压桩基础施工方案
- 2026年电脑维修从业者资格考试题库含答案
- 维稳工作协调小组工作方案
- 输电铁塔吊装施工方案
- 雨水管道安装工程资源调配方案
- 防水施工方案范本要点
- 医院申请医养结合申请书
- 园林绿化服务方案(3篇)
- 语音主播培训课件
- 2025年流产家属签字协议书
- (2025年标准)猪场股份承包协议书
- 2025年《中医护理适宜技术临床应用指南》
- 工程造价审核应急服务方案
- DB45∕T 2419-2021 钻孔管波探测技术规程
- 2025年学校食堂从业人员食品安全知识培训考试试题(附答案)
- GB/T 15849-2025密封放射源的泄漏检验方法
- 2025至2030中国美容院行业市场深度分析及前景趋势与投资报告
评论
0/150
提交评论