湖北省鄂州市泽林中学2026届高二上数学期末学业质量监测模拟试题含解析_第1页
湖北省鄂州市泽林中学2026届高二上数学期末学业质量监测模拟试题含解析_第2页
湖北省鄂州市泽林中学2026届高二上数学期末学业质量监测模拟试题含解析_第3页
湖北省鄂州市泽林中学2026届高二上数学期末学业质量监测模拟试题含解析_第4页
湖北省鄂州市泽林中学2026届高二上数学期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省鄂州市泽林中学2026届高二上数学期末学业质量监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在直三棱柱中,,,则直线与所成角的大小为()A.30° B.60°C.120° D.150°2.若圆上至少有三个点到直线的距离为1,则半径的取值范围是()A. B.C. D.3.数列的一个通项公式为()A. B.C. D.4.将一枚骰子先后抛掷两次,若先后出现的点数分别记为a,b,则直线到原点的距离不超过1的概率是()A. B.C. D.5.若集合,,则A. B.C. D.6.已知,条件,条件,则是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.设满足则的最大值为A. B.2C.4 D.168.若,则图像上的点的切线的倾斜角满足()A.一定为锐角 B.一定为钝角C.可能为 D.可能为直角9.由直线上的点向圆引切线,则切线长的最小值为()A. B.C.4 D.210.已知为等差数列,且,,则()A. B.C. D.11.如图,过抛物线的焦点的直线依次交抛物线及准线于点,若且,则抛物线的方程为()A.B.C.D.12.在中,若,,则外接圆半径为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.与直线和直线的距离相等的直线方程为______14.若两定点A,B的距离为3,动点M满足,则M点的轨迹围成区域的面积为_________15.1202年意大利数学家列昂那多-斐波那契以兔子繁殖为例,引人“兔子数列”,又称斐波那契数列.即该数列中的数字被人们称为神奇数,在现代物理,化学等领域都有着广泛的应用.若此数列各项被3除后的余数构成一新数列,则数列的前2022项的和为________.16.曲线的一条切线的斜率为,该切线的方程为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的首项,其前n项和为,且满足.(1)求数列的通项公式;(2)设,数列的前n项和为,且,求n.18.(12分)如图,在四棱锥中,底面四边形为角梯形,,,,O为的中点,,.(1)证明:平面;(2)若,求平面与平面所成夹角的余弦值.19.(12分)已知函数(m≥0).(1)当m=0时,求曲线在点(1,f(1))处的切线方程;(2)若函数的最小值为,求实数m的值.20.(12分)圆经过两点,且圆心在直线上.(1)求圆的方程;(2)求圆与圆的公共弦的长.21.(12分)已知圆的圆心在直线上,且圆与轴相切于点(1)求圆的标准方程;(2)若直线与圆相交于,两点,求的面积22.(10分)已知各项为正数的等比数列中,,.(1)求数列的通项公式;(2)设,求数列的前n项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据三棱柱的特征补全为正方体,则,为直线与所成角,连接,则为等边三角形即可得解.【详解】根据直三棱柱的特征,补全可得如图所示的正方体,易知,为直线与所成角,连接,则为等边三角形,所以,所以直线与所成角的大小为.故选:B2、B【解析】先求出圆心到直线的距离为,由此可知当圆的半径为时,圆上恰有三点到直线的距离为,当圆的半径时,圆上恰有四个点到直线的距离为,故半径的取值范围是,即可求出答案.【详解】由已知条件得的圆心坐标为,圆心到直线为,∵圆上至少有三个点到直线的距离为1,∴圆的半径的取值范围是,即,即半径的取值范围是.故选:.3、A【解析】根据规律,总结通项公式,即可得答案.【详解】根据规律可知数列的前三项为,所以该数列一个通项公式为故选:A4、C【解析】先由条件得出a,b满足,得出满足的基本事件数,再求出总的基本事件数,从而可得答案.【详解】直线到原点的距离不超过1,则所以当时,可以为5,6当时,可以为4,5,6当时,可以为4,5,6当时,可以为2,3,4,5,6当时,可以为1,2,3,4,5,6当时,可以为1,2,3,4,5,6满足的共有25种结果.将一枚骰子先后抛掷两次,若先后出现的点数分别记为a,b,共有种结果所以满足条件的概率为故选:C5、A【解析】通过解不等式得出集合B,可以做出集合A与集合B的关系示意图,可得出选项.【详解】因为,解不等式即,所以或,所以集合,作出集合A与集合B的示意图如下图所示:所以:,故选A【点睛】本题考查集合间的交集运算,属于基础题.6、A【解析】利用“1”的妙用探讨命题“若p则q”的真假,取特殊值计算说明“若q则p”的真假即可判断作答.【详解】因为,由得:,则,当且仅当,即时取等号,因此,,因,,由,取,则,,即,,所以是的充分不必要条件.故选:A7、C【解析】可行域如图,则直线过点A(0,1)取最大值2,则的最大值为4,选C.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.8、C【解析】求出导函数,判断导数的正负,从而得出结论【详解】,时,,递减,时,,递增,而,所以切线斜率可能为正数,也可能为负数,还可以为0,则倾斜角可为锐角,也可为钝角,还可以为,当时,斜率不存在,而存在,则不成立.故选:C9、D【解析】切点与圆心的连线垂直于切线,切线长转化为直线上点与圆心连线和半径的关系,利用点到直线的距离公式求出圆心与直线上点距离的最小值,结合勾股定理即可得出结果.【详解】设为直线上任意一点,,切线长的最小值为:,故选:D.10、B【解析】由已知条件求出等差数列的公差,从而可求出【详解】设等差数列的公差为,由,,得,解得,所以,故选:B11、D【解析】如图根据抛物线定义可知,进而推断出的值,在直角三角形中求得,进而根据,利用比例线段的性质可求得,则抛物线方程可得.【详解】如图分别过点,作准线的垂线,分别交准线于点,设,则由已知得:,由定义得:,故在直角三角形中,,,,从而得,,求得,所以抛物线的方程为故选:D12、A【解析】根据三角形面积公式求出c,再由余弦定理求出a,根据正弦定理即可求外接圆半径.【详解】,,,解得由正弦定理可得:,所以故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设直线方程为,根据两平行直线之间距离公式即可求解.【详解】设该直线为:,则由两平行直线之间距离公式得:,故该直线为:;故答案为:.14、【解析】建立如图直角坐标系,设点,根据题意和两点坐标求距离公式可得,结合圆的面积公式计算即可.【详解】以点A为坐标原点,射线AB为x轴的非负半轴建立直角坐标系,如图,设点,则,由,化简并整理得:,于是得点M轨迹是以点为圆心,2为半径的圆,其面积为,所以M点的轨迹围成区域的面积为.故答案为:15、【解析】由数列各项除以3的余数,可得为,知是周期为8的数列,即可求出数列的前2022项的和.【详解】由数列各项除以3的余数,可得为,是周期为8的数列,一个周期中八项和为,又,数列的前2022项的和.故答案为:.16、【解析】使用导数运算公式求得切点处的导数值,并根据导数的几何意义等于切线斜率求得切点的横坐标,进而得到切点坐标,然后利用点斜式求出切线方程即可.【详解】的导数为,设切点为,可得,解得,即有切点,则切线的方程为,即.故答案为:.【点睛】本题考查导数的加法运算,导数的几何意义,和求切线方程,难度不大,关键是正确的使用导数运算公式求得切点处的导数值,三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由条件得,则利用等差数列的定义可得答案;(2)利用裂项求和求出,再根据可求出n.【小问1详解】由得,从而数列是以1为首项,1为公差的等差数列,所以;【小问2详解】由(1)得,由得又,所以.18、(1)证明见解析;(2).【解析】(1)连接,可通过证明,得平面;(2)以O为坐标原点建立如图所示的空间直角坐标系,求出平面的法向量和平面的法向量,通过向量的夹角公式可得答案.【小问1详解】如图,连接,在中,由可得.因为,,所以,,因为,,,所以,所以.又因为,平面,,所以平面.【小问2详解】由(1)可知,,,两两垂直,以O为坐标原点建立如图所示的空间直角坐标系,则,,,,.由,有,则,设平面的法向量为,由,,有,取,则,,可得平面的一个法向量为.设平面的法向量为,由,,有,取,则,,可得平面的一个法向量为.由,,,可得平面与平面所成夹角的余弦值为.19、(1)(2)【解析】(1)求导,利用导函数的几何意义求解切线方程的斜率,进而求出切线方程;(2)对导函数再次求导,判断其单调性,结合隐零点求出其最小值,列出方程,求出实数m的值.【小问1详解】当时,因为,所以切线的斜率为,所以切线方程为,即.【小问2详解】因为,令,因为,所以在上单调递增,当实数时,,;当实数时,,;当实数时,,所以总存在一个,使得,且当时,;当时,,所以,令,因为,所以单调递减,又,所以时,所以,即.20、(1)(2)【解析】(1)设圆的方程为,代入所过的点后可求,从而可求圆的方程.(2)利用两圆的方程可求公共弦的方程,利用垂径定理可求公共弦的弦长.【小问1详解】设圆的方程为,,,所以圆的方程为;【小问2详解】由圆的方程和圆的方程可得公共弦的方程为:,整理得到:,到公共弦距离为,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论