版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届陕西省宝鸡市高二上数学期末学业质量监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.抛物线的准线方程是A. B.C. D.2.下列命题正确的是()A经过三点确定一个平面B.经过一条直线和一个点确定一个平面C.四边形确定一个平面D.两两相交且不共点的三条直线确定一个平面3.若函数在区间内存在单调递增区间,则实数的取值范围是()A. B.C. D.4.设O为正方形ABCD的中心,在O,A,B,C,D中任取3点,则取到的3点共线的概率为()A. B.C. D.5.已知各项均为正数的等比数列满足,若存在两项,使得,则的最小值为()A.4 B.C. D.96.计算复数:()A. B.C. D.7.已知函数(其中)的部分图像如图所示,则函数的解析式为()A. B.C. D.8.已知实数a,b满足,则下列不等式中恒成立的是()A. B.C. D.9.函数在上的最小值为()A. B.4C. D.10.已知角的终边经过点,则,的值分别为A., B.,C., D.,11.两个圆和的位置是关系是()A.相离 B.外切C.相交 D.内含12.现要完成下列两项调查:①从某社区70户高收入家庭、335户中等收入家庭、95户低收入家庭中选出100户,调查社会购买能力的某项指标;②从某中学的15名艺术特长生中选出3名调查学习负担情况.这两项调查宜采用的抽样方法是()A①简单随机抽样,②分层抽样 B.①分层抽样,②简单随机抽样C.①②都用简单随机抽样 D.①②都用分层抽样二、填空题:本题共4小题,每小题5分,共20分。13.已知命题“,”为假命题,则实数m的取值范围为______14.设有下列命题:①当,时,不等式恒成立;②函数在上的最小值为2;③函数在上的最大值为;④若,,且,则的最小值为其中真命题为________________.(填写所有真命题的序号)15.已知点P是椭圆上的一点,点,则的最小值为____________.16.曲线在处的切线方程为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆的圆心在直线上,且过点(1)求圆的方程;(2)已知直线经过原点,并且被圆截得的弦长为2,求直线l的方程.18.(12分)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥面ABCD,E为PD的中点.(1)证明:PB∥面AEC;(2)设AP=1,AD=,三棱锥P-ABD的体积V=,求点A到平面PBC的距离.19.(12分)已知函数,其中a为正数(1)讨论单调性;(2)求证:20.(12分)已知椭圆的右焦点是椭圆上的一动点,且的最小值是1,当垂直长轴时,.(1)求椭圆的标准方程;(2)设直线与椭圆相切,且交圆于两点,求面积的最大值,并求此时直线方程.21.(12分)在中,(1)求的大小;(2)若,.求的面积22.(10分)已知等差数列{an}的前n项和为Sn,数列{bn}满足:点(n,bn)在曲线y=上,a1=b4,___,数列{}的前n项和为Tn从①S4=20,②S3=2a3,③3a3﹣a5=b2这三个条件中任选一个,补充到上面问题的横线上并作答(1)求数列{an},{bn}的通项公式;(2)是否存在正整数k,使得Tk>,且bk>?若存在,求出满足题意的k值;若不存在,请说明理由
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据抛物线的概念,可得准线方程为2、D【解析】由平面的基本性质结合公理即可判断.【详解】对于A,过不在一条直线上三点才能确定一个平面,故A不正确;对于B,经过一条直线和直线外一个点确定一个平面,故B不正确;对于C,空间四边形不能确定一个平面,故C不正确;对于D,两两相交且不共点的三条直线确定一个平面,故D正确.故选:D3、D【解析】求出函数的导数,问题转化为在有解,进而求函数的最值,即可求出的范围.【详解】∵,∴,若在区间内存在单调递增区间,则有解,故,令,则在单调递增,,故.故选:D.4、A【解析】列出从5个点选3个点的所有情况,再列出3点共线的情况,用古典概型的概率计算公式运算即可.【详解】如图,从5个点中任取3个有共种不同取法,3点共线只有与共2种情况,由古典概型的概率计算公式知,取到3点共线的概率为.故选:A【点晴】本题主要考查古典概型的概率计算问题,采用列举法,考查学生数学运算能力,是一道容易题.5、C【解析】由求得,代入求得,利用基本不等式求出它的最小值【详解】因为各项均为正数的等比数列满足,可得,即解得或(舍去)∵,,∴=当且仅当,即m=2,n=4时,等号成立故的最小值等于.故选:C【点睛】方法点睛:本题主要考查等比数列的通项公式和基本不等式的应用,解题的关键是常量代换的技巧,所谓常量代换,就是把一个常数用代数式来代替,如,再把常数6代换成已知中的m+n,即.常量代换是基本不等式里常用的一个技巧,可以优化解题,提高解题效率.6、D【解析】直接利用复数代数形式的乘除运算化简可得结论.【详解】故选:D.7、B【解析】根据题图有且,结合五点法求参数,即可得的解析式.【详解】由图知:且,则,所以,则,即,又,可得,,则,,又,即有.综上,.故选:B8、D【解析】利用特殊值排除错误选项,利用函数单调性证明正确选项.【详解】时,,但,所以A选项错误.时,,但,所以B选项错误.时,,但,所以C选项错误.在上递增,所以,即D选项正确.故选:D9、D【解析】求出导数,由导数确定函数在上的单调性与极值,可得最小值【详解】,所以时,,递减,时,,递增,所以是在上的唯一极值点,极小值也是最小值.故选:D10、C【解析】利用任意角的三角函数的定义:,,,代入计算即可得到答案【详解】由于角的终边经过点,则,,(为坐标原点),所以由任意角的三角函数的定义:,.故答案选C【点睛】本题考查任意角的三角函数的定义,解决此类问题的关键是掌握牢记三角函数定义并能够熟练应用,属于基础题11、C【解析】根据圆的方程得出两圆的圆心和半径,再得出圆心距离与两圆的半径的关系,可得选项.【详解】圆的圆心为,半径,的圆心为,半径,则,所以两圆的位置是关系是相交,故选:C.【点睛】本题考查两圆的位置关系,关键在于运用判定两圆的位置关系一般利用几何法.即比较圆心之间的距离与半径之和、之差的大小关系,属于基础题.12、B【解析】通过简单随机抽样和分层抽样的定义辨析得到选项【详解】在①中,由于购买能力与收入有关,应该采用分层抽样;在②中,由于个体没有明显差别,而且数目较少,应该采用简单随机抽样故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据命题的否定与原命题真假性相反,即可得到,为真命题,则,从而求出参数的取值范围;【详解】解:因为命题“,”为假命题,所以命题“,”为真命题,所以,解得;故答案:14、①③④【解析】①直接利用基本不等式判断即可;②直接利用基本不等式以及等号成立的条件判断即可;③分子、分母同除,利用基本不等式即可判断;④设,,利用指、对互化以及基本不等式即可判断.【详解】由于,,故恒成立,当且仅当时取等号,所以①正确;,当且仅当,即时取等号,由于,所以②不正确;因为,所以,当且仅当时取等号,而,即函数的最大值为,所以③正确;设,,则,,,,,所以,当且仅当,时取等号,故的最小值为,所以④正确.故答案为:①③④【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.15、【解析】设,表示出,消去y,利用二次函数求最值即可.【详解】设,则.所以当x=1时,最小.故答案为:.16、【解析】求得的导数,可得切线的斜率和切点,由斜截式方程可得切线方程【详解】解:的导数为,可得曲线在处的切线斜率为,切点为,即有切线方程为故答案为【点睛】本题考查导数的运用:求切线方程,考查导数的几何意义,直线方程的运用,考查方程思想,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或.【解析】(1)根据题意设圆心坐标为,进而得,解得,故圆的方程为(2)分直线的斜率存在和不存在两种情况讨论求解即可.【详解】(1)圆的圆心在直线上,设所求圆心坐标为∵过点,解得∴所求圆的方程为(2)直线经过原点,并且被圆截得的弦长为2①当直线的斜率不存在时,直线的方程为,此时直线被圆截得的弦长为2,满足条件;②当直线的斜率存在时,设直线的方程为,由于直线被圆截得的弦长为,故圆心到直线的距离为故由点到直线的距离公式得:解得,所以直线l的方程为综上所述,则直线l的方程为或【点睛】易错点点睛:本题第二问在解题的过程中要注意直线斜率不存在情况的讨论,即分直线的斜率存在和不存在两种,避免在解题的过程中忽视斜率不存在的情况致错,考查运算求解能力与分类讨论思想,是中档题.18、(1)证明见解析;(2).【解析】(1)设BD交AC于点O,连结EO,根据三角形中位线证明BP∥EO即可;(2)根据三棱锥P-ABD的体积求出AB长度,过A作AH⊥BP于H,可证AH即为要求的距离,根据直角三角形等面积法即可求AH长度.【小问1详解】设BD交AC于点O,连结EO.∵ABCD为矩形,∴O为BD的中点.又E为PD的中点,∴EO∥PB,又EO平面AEC,PB平面AEC,∴PB∥平面AEC.【小问2详解】,又V=,可得AB=2.在面PAB内过点A作交于.由题设易知平面,∴故平面,由等面积法得:,∴点A到平面的距离为.19、(1)答案见解析(2)证明见解析【解析】(1)求解函数的导函数,并且求的两个根,然后分类讨论,和三种情况下对应的单调性;(2)令,通过二次求导法,判断函数的单调性与最小值,设的零点为,求出取值范围,最后将转化为的对勾函数并求解最小值,即可证明出不等式.【小问1详解】函数的定义域为∵令得∵,∴,得或①当,即时,时,或;时,.∴在上单调递增,在上单调递减,在上单调递增②当,即时,时,或;时,.∴在上单调递增,在上单调递减,在上单调递增③当,即时,∴在上单调递增综上所述:当时,在和上单调递增,在上单调递减;当时,在和上单调递增,在上单调递减;当时,在上单调递增【小问2详解】令,()∴,令∴,∴在上单调递增又∵,,∴使得,即(*)∴当时,,∴,∴单调递减∴当时,,∴,∴单调递增∴,()由(*)式可知:,∴,∴∵,∴函数单调递减∴,∴∴【点睛】求解本题的关键是利用二次求导法,通过虚设零点,求解原函数的单调性与最小值,并通过最小值的取值范围证明不等式.20、(1);(2),.【解析】(1)由的最小值为1,得到,再由,结合,求得的值,即可求得椭圆的方程.(2)设切线的方程为,联立方程组,根据直线与椭圆相切,求得,结合点到直线的距离公式和圆的弦长公式,求得的面积的表示,结合函数的单调性,即可求解.【详解】(1)由题意,点椭圆上的一动点,且的最小值是1,得,因为当垂直长轴时,可得,所以,即,又由,解得,所以椭圆的标准方程为.(2)由题意知切线的斜率一定存在,否则不能形成,设切线的方程为,联立,整理得,因为直线与椭圆相切,所以,化简得,则,因为点到直线的距离,所以,即,故的面积为,因为,可得,即,函数在上单调递增,所以,当时取等号,则,即面积的最大值为.当时,此时,所以直线的方程为.【点睛】对于直线与椭圆的位置关系的处理方法:1、判定与应用直线与椭圆的位置关系,一把转化为研究直线方程与椭圆组成的方程组的解得个数,结合判别式求解;2、对于过定点的直线,也可以通过定点在椭圆的内部或在椭圆上,判定直线与椭圆的位置关系.21、(1)(2)【解析】(1)利用正弦定理将边化角,再根据两角和的正弦公式及诱导公式得到,即可得解;(2)首先由余弦定理求出,即可得到,再根据面积公式计算可得;【小问1详解】解:因为,由正弦定理可得,即,又在中,,所以,,所以;【小问2详解】解:由余弦定理得,即,解得,所以,又,所以;.22、(1)条件选择见解析;an=2n,bn=25﹣n.(2)不存在,理由见解析.【解析】(1)把点(n,bn)代入曲线y=可得到bn=25﹣n,进而求出a1,设等差数列{an}的公差为d,选①S4=20,利用等差数列的前n项和公式可求出d,从而得到an;若选②S3=2a3,利用等差数列的前n项和公式可求出d,从而得到an;若选③3a3﹣a5=b2,利用等差数列的通项公式公式可求出d,从而得到an;(2)由(1)可知Sn==n(1+n),=,再利用裂项相消法求出Tn=1﹣,不等式无解,即不存在正整数k,使得Tk>,且bk>【小问1详解】解:∵点(n,bn)在曲线y=上,∴=25﹣n,∴a1=b4=25﹣4=2,设等差数列{an}的公差为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年伊通满族自治县事业单位引进人才备考题库及答案详解1套
- 2026年国药集团广东环球制药有限公司招聘备考题库及完整答案详解1套
- 2026年仰恩大学公开招聘人事处工作人员备考题库有答案详解
- 2026年丽江市古城区疾病预防控制中心临聘人员招聘备考题库含答案详解
- 2026年中国建筑第五工程局有限公司山东分公司招聘备考题库及参考答案详解1套
- 2026年广东工商职业技术大学招聘备考题库及1套完整答案详解
- 2026年宜宾五粮液有机农业发展有限公司招聘备考题库有答案详解
- 政策法规处内控制度
- 镇政府内控制度
- 企业如何执行内控制度
- DBJ-T 15-30-2022 铝合金门窗工程技术规范
- 2024届广东省高三三校12月联考英语试题及答案
- 城市设计编制标准 DG-TJ08-2402-2022
- 粉煤灰在高速公路基层中的应用
- 教学设计中的学科整合与跨学科学习
- 2024年广东省粤科金融集团有限公司招聘笔试参考题库含答案解析
- 消防设施维保投标方案(技术方案)
- 设备综合效率OEE统计表(使用)
- WATERS公司的UPLCTQD培训资料MS7校正课件
- 【超星尔雅学习通】航空与航天网课章节答案
- 2022年福州大学计算机科学与技术专业《操作系统》科目期末试卷B(有答案)
评论
0/150
提交评论