上海培佳双语学校2026届高一数学第一学期期末调研模拟试题含解析_第1页
上海培佳双语学校2026届高一数学第一学期期末调研模拟试题含解析_第2页
上海培佳双语学校2026届高一数学第一学期期末调研模拟试题含解析_第3页
上海培佳双语学校2026届高一数学第一学期期末调研模拟试题含解析_第4页
上海培佳双语学校2026届高一数学第一学期期末调研模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海培佳双语学校2026届高一数学第一学期期末调研模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知是定义在上的奇函数,且在上单调递增,若,则的解集为()A. B.C. D.2.若,,,则的大小关系为()A. B.C. D.3.福州新港江阴港区地处福建最大海湾兴化湾西北岸,全年全日船泊进出港不受航道及潮水的限制,是迄今为止“我国少有、福建最佳”的天然良港.如图,是港区某个泊位一天中6时到18时的水深变化曲线近似满足函数,据此可知,这段时间水深(单位:m)的最大值为()A.5 B.6C.8 D.104.我国著名数学家华罗庚先生曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图象来研究函数的性质,也可用函数的解析式来琢磨函数的图象的特征,如通过函数的解析式可判断其在区间的图象大致为()A. B.C. D.5.已知函数,有下面四个结论:①的一个周期为;②的图像关于直线对称;③当时,的值域是;④在(单调递减,其中正确结论的个数是()A.1 B.2C.3 D.46.若函数y=|x|(x-1)的图象与直线y=2(x-t)有且只有2个公共点,则实数t的所有取值之和为()A.2 B.C.1 D.7.直线的斜率为,在y轴上的截距为b,则有()A. B.C. D.8.将函数()的图象向右平移个单位长度后,得到函数的图象,若为偶函数,则()A.5 B.C.4 D.9.已知,则a,b,c的大小关系为()A.a<b<c B.c<a<bC.a<c<b D.c<b<a10.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分且不必要条件 D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.若函数,则函数的值域为___________.12.已知圆心角为的扇形的面积为,则该扇形的半径为____.13.天津之眼,全称天津永乐桥摩天轮,是世界上唯一一个桥上瞰景的摩天轮.如图,已知天津之眼的半径是55m,最高点距离地面的高度为120m,开启后按逆时针方向匀速转动,每30转动一圈.喜欢拍照的南鸢同学想坐在天津之眼上拍海河的景色,她在距离地面最近的舱位进舱.已知在距离地面超过92.5m的高度可以拍到最美的景色,则在天津之眼转动一圈的过程中,南鸢同学可以拍到最美景色的时间是_________分钟14.函数的定义域是___________.15.的值为______.16.函数的最小值为_______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在平面直角坐标系中,点为单位圆与轴正半轴的交点,点为单位圆上的一点,且,点沿单位圆按逆时针方向旋转角后到点.(1)当时,求的值;(2)设,求的取值范围.18.已知函数.(1)根据定义证明:函数在上是增函数;(2)根据定义证明:函数是奇函数.19.设函数(1)若,求的值(2)求函数在R上的最小值;(3)若方程在上有四个不相等的实数根,求a的取值范围20.若二次函数满足,且.(1)求的解析式;(2)若在区间上,不等式恒成立,求实数的取值范围.21.(1)已知角的终边过点,且,求的值;(2)已知,,且,求.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】由可得,由单调性即可判定在和上的符号,再由奇偶性判定在和上的符号,即可求解.【详解】∵即,∵在上单调递增,∴当时,,此时,当时,,此时,又∵是定义在上的奇函数,∴在上单调递增,且,当时,,此时,当时,,此时,综上可知,的解集为,故选:D【点睛】本题考查了函数的奇偶性和单调性的交汇,求得函数在各个区间上的符号是关键,考查了推理能力,属于中档题.2、A【解析】由指数函数的单调性可知,由对数函数的单调性可知,化简,进而比较大小即可【详解】因为在上是增函数,所以;在上是增函数,所以;,所以,故选:A【点睛】本题考查指数、对数比较大小问题,考查指数函数、对数函数的单调性的应用3、C【解析】从图象中的最小值入手,求出,进而求出函数的最大值,即为答案.【详解】从图象可以看出,函数最小值为-2,即当时,函数取得最小值,即,解得:,所以,当时,函数取得最大值,,这段时间水深(单位:m)的最大值为8m.故选:C4、A【解析】根据函数的定义域,函数的奇偶性,函数值的符号及函数的零点即可判断出选项.【详解】当时,令,得或,且时,;时,,故排除选项B.因为为偶函数,为奇函数,所以为奇函数,故排除选项C;因为时,函数无意义,故排除选项D;故选:A5、B【解析】函数周期.,故是函数的对称轴.由于,故③错误.,函数在不单调.故有个结论正确.【点睛】本题主要考查三角函数图像与性质,包括了周期性,对称性,值域和单调性.三角函数的周期性,其中正弦和余弦函数的周期都是利用公式来求解,而正切函数函数是利用公式来求解.三角函数的对称轴是使得函数取得最大值或者最小值的地方.对于选择题6、C【解析】可直接根据题意转化为方程有两个根,然后利用分类讨论思想去掉绝对值再利用判别式即可求得各个t的值【详解】由题意得方程有两个不等实根,当方程有两个非负根时,令时,则方程为,整理得,解得;当时,,解得,故不满足满足题意;当方程有一个正跟一个负根时,当时,,,解得,当时,方程为,,解得;当方程有两个负根时,令,则方程为,解得,当,,解得,不满足题意综上,t的取值为和,因此t的所有取值之和为1,故选C【点睛】本题是在二次函数的基础上加了绝对值,所以首先需解决绝对值,关于去绝对值直接用分类讨论思想即可;关于二次函数根的分布需结合对称轴,判别式,进而判断,必要时可结合进行判断7、A【解析】将直线方程化为斜截式,由此求得正确答案.【详解】,所以.故选:A8、C【解析】先由函数图象平移规律可得,再由为偶函数,可得(),则(),再由可得出的值.【详解】由题意可知,因为为偶函数,所以(),则(),因为,所以.故选:C.9、B【解析】结合指数函数、幂函数的单调性确定正确选项.【详解】在上递增,在上递增..故选:B10、A【解析】解指数不等式和对数不等式,求出两个命题的等价命题,进而根据充要条件的定义,可得答案【详解】“”“”,“”“”,“”是“”的充分而不必要条件,故“”是“”的的充分而不必要条件,故选:二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】求出函数的定义域,进而求出的范围,利用换元法即可求出函数的值域.【详解】由已知函数的定义域为又,定义域需满足,令,因为,所以,利用二次函数的性质知,函数的值域为故答案为:.12、4【解析】由扇形的面积公式列方程即可求解.【详解】扇形的面积,即,解得:.故答案为:.13、10【解析】借助三角函数模型,设,以轴心为原点,与地面平行的直线为轴,建立直角坐标系,由题意求出解析式,再令,解三角不等式即可得答案.【详解】解:如图,设座舱距离地面最近的位置为点,以轴心为原点,与地面平行的直线为轴,建立直角坐标系.设时,南鸢同学位于点,以为终边的角为,根据摩天轮转一周大约需要,可知座舱转动的角速度约为,由题意,可得,,令,,可得,所以南鸢同学可以拍到最美景色的时间是分钟,故答案为:10.14、【解析】利用根式、分式的性质求函数定义域即可.【详解】由解析式知:,则,可得,∴函数定义域为.故答案为:.15、11【解析】进行对数和分数指数幂的运算即可【详解】原式故答案为:1116、【解析】根据正弦型函数的性质求的最小值.【详解】由正弦型函数的性质知:,∴的最小值为.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据三角函数的定义结合二倍角的正弦公式、诱导公式化简可得的值;(2)利用辅助角公式可得,结合角的取值范围可求得的取值范围.【小问1详解】解:由三角函数的定义,可得,当时,,即,,【小问2详解】解:,,,所以,,,则,则,即的取值范围为.18、⑴见解析;⑵见解析.【解析】(1)利用单调性定义证明函数的单调性;(2)利用奇偶性定义证明函数奇偶性.试题解析:⑴设任意的,且,则,,即,又,,即,在上是增函数⑵,,,即所以函数是奇函数.点睛:证明函数单调性的一般步骤:(1)取值:在定义域上任取,并且(或);(2)作差:,并将此式变形(要注意变形到能判断整个式子符号为止);(3)定号:判断的正负(要注意说理的充分性),必要时要讨论;(4)下结论:根据定义得出其单调性19、(1)(2)(3)【解析】(1)利用求得,由此求得.(2)利用换元法,对进行分类讨论,结合二次函数的性质求得正确答案.(3)利用换元法,结合二次函数零点分布等知识来求得的取值范围.【小问1详解】因,所以即此时,由【小问2详解】令,,则,对称轴为①,即,②,即,③,即,综上可知,.【小问3详解】令,由题意可知,当时,有两个不等实数解,所以原题可转化为在内有两个不等实数根所以有20、(1);(2).【解析】(1)由条件列关于a,b,c的方程,解方程求a,b,c,由此可得函数的解析式,(2)由已知可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论